(本小題滿分10分)設(shè)函數(shù)
(1)證明函數(shù)是偶函數(shù);
(2)若方程有兩個(gè)根,試求的取值范圍。
(1)證明:見解析;(2) 或。
解析試題分析:(1)根據(jù)奇偶性的定義進(jìn)行判定并證明。
(2)方程有兩個(gè)根,可以轉(zhuǎn)換為求解函數(shù)y=f(x)與y=m的圖像的交點(diǎn)問題來處理得到。
(1)證明: ,所以是偶函數(shù)!3分。
(2) ,……………………5分
如圖!7分
由函數(shù)的圖象易知或……………………10分
考點(diǎn):本試題主要考查了函數(shù)奇偶性和函數(shù)與方程思想的運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是對于方程解的問題可以利用數(shù)形結(jié)合的思想來解決時(shí)常用的重要的方法之一。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)已知函數(shù)(其中為常數(shù),)為偶函數(shù).
(1) 求的值;
(2) 用定義證明函數(shù)在上是單調(diào)減函數(shù);
(3) 如果,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若,求的值;
(2)若的圖像與直線相切于點(diǎn),求的值;
(3)在(2)的條件下,求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知函數(shù).
(1)是否存在實(shí)數(shù)使函數(shù)f(x)為奇函數(shù)?證明你的結(jié)論;
(2)用單調(diào)性定義證明:不論取任何實(shí)數(shù),函數(shù)f(x)在其定義域上都是增函數(shù);
(3)若函數(shù)f(x)為奇函數(shù),解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某炮兵陣地位于地面A處,兩觀察所分別位于地面點(diǎn)C和D處, 已知CD=6000m,∠ACD=45°,∠ADC=75°, 目標(biāo)出現(xiàn)于地面點(diǎn)B處時(shí),測得∠BCD=30°,∠BDC=15°(如圖),求炮兵陣地到目標(biāo)的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣的含藥量(毫克)與時(shí)間(小時(shí))成正比.藥物釋放完畢后,與的函數(shù)關(guān)系式為(為常數(shù)),如圖所示,根據(jù)圖中提供的信息,回答下列問題:
(1)求從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時(shí)間(小時(shí))之間的函數(shù)關(guān)系式;(2)據(jù)測定,當(dāng)空氣中每立方米空氣的含藥量降到0.25毫克以下時(shí),學(xué)生方可進(jìn)教室,那從藥物釋放開始,至少需要經(jīng)過多少小時(shí)后,學(xué)生才能回到進(jìn)教室?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的值域;
(2)若時(shí),函數(shù)的最小值為,求的值和函數(shù) 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)設(shè),的最小值是,最大值是,求實(shí)數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com