過拋物線y2=4x的焦點的直線交拋物線于A、B兩點,O為坐標(biāo)原點,則
OA
OB
的值是( 。
A、3B、-3C、12D、-12
分析:由拋物線y2=4x與過其焦點(1,0)的直線方程聯(lián)立,消去y整理成關(guān)于x的一元二次方程,設(shè)出A(x1,y1)、B(x2,y2)兩點坐標(biāo),
OA
• 
OB
=x1•x2+y1•y2,由韋達(dá)定理可以求得答案.
解答:解:由題意知,拋物線y2=4x的焦點坐標(biāo)為(1,0),∴直線AB的方程為y=k(x-1),
y2=4x
y=k(x-1)
得k2x2-(2k2+4)x+k2=0,設(shè)A(x1,y1),B(x2,y2),
x1+x2=
2k2+ 4
k2
,x1x2=1
,y1•y2=k(x1-1)•k(x2-1)=k2[x1•x2-(x1+x2)+1]
OA
OB
=x1•x2+y1•y2=1+k2(2-
2k2+4
k2
) =-3
,
從而排除A、C、D;
故選B.
點評:本題考查直線與圓錐曲線的關(guān)系,解決問題的關(guān)鍵是聯(lián)立拋物線方程與過其焦點的直線方程,利用韋達(dá)定理予以解決,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角為
π
4
的直線過拋物線y2=4x的焦點且與拋物線交于A,B兩點,則|AB|=(  )
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F引兩條互相垂直的直線AB、CD交拋物線于A、B、C、D四點.
(1)求當(dāng)|AB|+|CD|取最小值時直線AB、CD的傾斜角的大小
(2)求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點,O為坐標(biāo)原點.若|AF|=3,則△AOB的面積為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,點O是坐標(biāo)原點,若|AF|=5,則△AOB的面積為(  )
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,A、B兩點在準(zhǔn)線l上的射影分別為M.N,則∠MFN=(  )

查看答案和解析>>

同步練習(xí)冊答案