已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價格p與產(chǎn)量q的函數(shù)關(guān)系式為p=25-
18
q
.求產(chǎn)量q等于
 
,利潤L最大.
分析:根據(jù)條件,建立利潤函數(shù),根據(jù)函數(shù)的性質(zhì)求函數(shù)的最大值即可.
解答:解;∵成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價格p與產(chǎn)量q的函數(shù)關(guān)系式為p=25-
1
8
q

∴利潤L=(25-
1
8
q
)q-(100+4q)═(25-
1
8
q
)q-100-4q=-
1
8
q
2+21q-100,
對應(yīng)的拋物線開口向下,
∴當(dāng)q=-
21
2×(-
1
8
)
=84
時,利潤L最大.
故答案為:84.
點評:本題主要考查與函數(shù)有關(guān)的函數(shù)應(yīng)用,利用條件建立函數(shù)關(guān)系,利用二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價格p與產(chǎn)量q的函數(shù)關(guān)系式為p=25-
18
q
.求產(chǎn)量q為何值時,利潤L最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價格p與產(chǎn)量q的函數(shù)關(guān)系式為.求產(chǎn)量q為何值時,利潤L最大?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價格p與產(chǎn)量q的函數(shù)關(guān)系式為p=25-q.求產(chǎn)量q為何值時利潤L最大.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價格p與產(chǎn)量q的函數(shù)關(guān)系式為p=25-q.求產(chǎn)量q為何值時利潤L最大.?

查看答案和解析>>

同步練習(xí)冊答案