橢圓
x2
a2
+
y2
b2
=1
(a>b>0),點(diǎn)A為其上任意一點(diǎn),左右焦點(diǎn)為F1,F(xiàn)2,若|AF1|,|F1F2|,|AF2|成等差數(shù)列,則此橢圓的離心率為_(kāi)_____.
橢圓
x2
a2
+
y2
b2
=1
(a>b>0),點(diǎn)A為其上任意一點(diǎn),
左右焦點(diǎn)為F1,F(xiàn)2,|AF1|,|F1F2|,|AF2|成等差數(shù)列,
∴2|F1F2|=|AF1|+|AF2|,
∴4c=2a,即a=2c,
∴e=
c
a
=
1
2

故答案為:
1
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)橢圓
x2
3
+
y2
4
=1
的焦點(diǎn)為F1、F2,P為橢圓上一點(diǎn),且|PF1|=3|PF2|,則|PF1|的值為(  )
A.3B.1C.
3
3
2
D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

從橢圓短軸的一個(gè)端點(diǎn)看長(zhǎng)軸的兩個(gè)端點(diǎn)的視角為120°,那么此橢圓的離心率為( 。
A.
1
2
B.
2
2
C.
3
3
D.
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1、F2為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦點(diǎn);M為橢圓上一點(diǎn),MF1垂直于x軸,且∠F1MF2=60°,則橢圓的離心率為( 。
A.
1
2
B.
2
2
C.
3
3
D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F,右頂點(diǎn)為A,點(diǎn)B在橢圓上,且BF⊥x軸,直線AB交y軸于點(diǎn)P.若
AP
=2
PB

|AP|=2|PB|,則橢圓的離心率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓
x2
25
+
y2
9
=1
上一點(diǎn)A到焦點(diǎn)F的距離為2,B為AF的中點(diǎn),O為坐標(biāo)原點(diǎn),則|OB|的值為(  )
A.8B.4C.2D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)的兩焦點(diǎn)關(guān)于直線y=x的對(duì)稱點(diǎn)均在橢圓內(nèi)部,則橢圓的離心率e的取值范圍為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1,F(xiàn)2為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)焦點(diǎn),過(guò)F2作橢圓的弦AB,若△AF1B的周長(zhǎng)為16,橢圓的離心率e=
3
2
,則橢圓的方程為(  )
A.
x2
4
+
y2
3
=1
B.
x2
16
+
y2
3
=1
C.
x2
16
+
y2
4
=1
D.
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),橢圓上一點(diǎn)M滿足∠MF1O=
π
3
,N為MF1的中點(diǎn)且ON⊥MF1,則橢圓的離心率為(  )
A.
3
-1
B.
3
2
C.2-
2
D.
2
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案