在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的半徑之比是2:1. 拓展到空間,研究正四面體(四個(gè)面均為全等的正三角形的四面體)的外接球和內(nèi)切球的半徑關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的半徑之比是    
【答案】分析:平面圖形類(lèi)比空間圖形,二維類(lèi)比三維.
解答:解:從平面圖形類(lèi)比空間圖形,從二維類(lèi)比三維,可得如下結(jié)論:正四面體的外接球和內(nèi)切球的半徑之比是 3:1故答案為:3:1
點(diǎn)評(píng):本題主要考查學(xué)生的知識(shí)量和知識(shí)的遷移類(lèi)比等基本能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的半徑之比是2:1. 拓展到空間,研究正四面體(四個(gè)面均為全等的正三角形的四面體)的外接球和內(nèi)切球的半徑關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的半徑之比是
3:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的半徑之比是2:1. 拓展到空間,研究正四面體(四個(gè)面均為全等的正三角形的四面體)的外接球和內(nèi)切球的半徑關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的半徑之比是 ________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的半徑之比是2:1. 拓展到空間,研究正四面體(四個(gè)面均為全等的正三角形的四面體)的外接球和內(nèi)切球的半徑關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的半徑之比是 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的半徑之比是2:1. 拓展到空間,研究正四面體(四個(gè)面均為全等的正三角形的四面體)的外接球和內(nèi)切球的半徑關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的半徑之比是 ______.

查看答案和解析>>

同步練習(xí)冊(cè)答案