若雙曲線=1(a>0,b>0)的漸近線與圓(x-2)2+y2=2相交,則此雙曲線的離心率的取值范圍是

A.(2,+∞)         B.(1,2)            C.(1,)           D.(,+∞)

 

【答案】

C

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宿州一模)已知斜率為1的直線l與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1,3).
(1)求雙曲線C的離心率;
(2)若雙曲線C的右焦點(diǎn)坐標(biāo)為(3,0),則以雙曲線的焦點(diǎn)為焦點(diǎn),過直線g:x-y+9=0上一點(diǎn)M作橢圓,要使所作橢圓的長軸最短,點(diǎn)M應(yīng)在何處?并求出此時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以O(shè)為原點(diǎn),
OA
所在直線為x軸,建立如圖所示的直角坐標(biāo)系.若
OA
AG
=1
,點(diǎn)A的坐標(biāo)為(t,0),t∈(0,+∞),點(diǎn)G的坐標(biāo)為(m,3).
(1)若以O(shè)為中心,A為頂點(diǎn)的雙曲線經(jīng)過點(diǎn)G,求當(dāng)|
OG
|
取最小值時(shí)雙曲線C的方程;
(2)過點(diǎn)N(0,1)能否作出直線l,使l與雙曲線C交于S,T兩點(diǎn),且OS⊥OT?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=2,F(xiàn)1,F(xiàn)2是左,右焦點(diǎn),過F2作x軸的垂線與雙曲線在第一象限交于P點(diǎn),直線F1P與右準(zhǔn)線交于Q點(diǎn),已知
F1P
F2Q
=-
15
64

(1)求雙曲線的方程;
(2)設(shè)過F1的直線MN分別與左支,右支交于M、N,線段MN的垂線平分線l與x軸交于點(diǎn)G(x0,0),若1≤|NF2|<3,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以O(shè)為原點(diǎn),數(shù)學(xué)公式所在直線為x軸,建立如圖所示的直角坐標(biāo)系.若數(shù)學(xué)公式,點(diǎn)A的坐標(biāo)為(t,0),t∈(0,+∞),點(diǎn)G的坐標(biāo)為(m,3).
(1)若以O(shè)為中心,A為頂點(diǎn)的雙曲線經(jīng)過點(diǎn)G,求當(dāng)數(shù)學(xué)公式取最小值時(shí)雙曲線C的方程;
(2)過點(diǎn)N(0,1)能否作出直線l,使l與雙曲線C交于S,T兩點(diǎn),且OS⊥OT?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省湖州中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

F1,F(xiàn)2分別是雙曲線-=1的左、右焦點(diǎn),A是其右頂點(diǎn),過F2作x軸的垂線與雙曲線的一個(gè)交點(diǎn)為P,G是△PF1F2的重心,若=0,則雙曲線的離心率是( )
A.2
B.
C.3
D.

查看答案和解析>>

同步練習(xí)冊答案