精英家教網 > 高中數學 > 題目詳情
△ABC中,a,b,c分別為∠A,∠B,∠C的對邊,如果a,b,c成等差數列,∠B=30°,△ABC的面積為,那么b=   
【答案】分析:根據等差中項的性質可知2b=a+c.平方后整理得a2+c2=4b2-2ac.利用三角形面積求得ac的值,進而把a2+c2=4b2-2ac.代入余弦定理求得b的值.
解答:解:∵a,b,c成等差數列,
∴2b=a+c.
平方得a2+c2=4b2-2ac.
又△ABC的面積為,且∠B=30°,
故由S=acsinB=ac•sin30°=ac=
得ac=6,
∴a2+c2=4b2-12.
由余弦定理
cosB====
解得b2=4+2
又∵b為邊長,
∴b=1+
故答案為:1+
點評:本題主要考查了解三角形的問題.解題過程中常需要正弦定理,余弦定理,三角形面積公式以及勾股定理等知識.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,a、b、c分別是A、B、C的對邊.向量
m
=(2,0),
n
=(sinB,1-cosB)
(Ⅰ)若B=
π
3
.求
m
n

(Ⅱ)若
m
n
所成角為
π
3
.求角B的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a、b、c三邊成等差數列,求證:B≤60°.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,A:B:C=4:2:1,證明
1
a
+
1
b
=
1
c

查看答案和解析>>

科目:高中數學 來源: 題型:

△ABC中,a,b,c分別為角A,B,C的對邊.若a(a+b)=c2-b2,則角C為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2005•靜安區(qū)一模)在ρABC中,a、b、c 分別為∠A、∠B、∠C的對邊,∠A=60°,b=1,c=4,則
a+b+c
sinA+sinB+sinC
=
2
39
3
2
39
3

查看答案和解析>>

同步練習冊答案