如圖所示,在矩形ABCD中,AB=2BC=2a,E為AB上一點,將B點沿線段EC折起至點P,連接PA、PC、PD,取PD的中點F,若有AF∥平面PEC.

(1)試確定E點位置;

(2)若異面直線PE、CD所成的角為60°,并且PA的長度大于a,

求證:平面PEC⊥平面AECD.

(1) E為AB的中點(2)證明略


解析:

(1)  E為AB的中點.

證明如下:取PC的中點G,連接GE,GF.

由條件知GF∥CD,EA∥CD,∴GF∥EA.

則G、E、A、F四點共面.

∵AF∥平面PEC,

平面GEAF∩平面PEC=GE,

∴FA∥GE.

則四邊形GEAF為平行四邊形.

∴GF=AE,∵GF=CD,∴EA=CD=BA.

即E為AB的中點.

(2)  ∵EA∥CD,PE、CD所成的角為60°,且PA的長度大于a.

∴∠PEA=120°.

∵PE=BE=EA=a,∴PA=a.

取CE的中點M,連接PM,AM,BM,在△AEM中,      

AM==a.

∵PM=BM=a,∴PM2+AM2=PA2.

則∠PMA=90°,PM⊥AM.

∵PM⊥EC,EC∩AM=M,

∴PM⊥平面AECD.

∵PM平面PEC,

∴平面PEC⊥平面AECD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、如圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,O為AE的中點,以AE為折痕將△ADE向上折起,使D到P點位置,且PC=PB,F(xiàn)是BP的中點.
(Ⅰ)求證:CF∥面APE;
(Ⅱ)求證:PO⊥面ABCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

19、如圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,O為AE的中點,F(xiàn)是AB的中點.以AE為折痕將△ADE向上折起,使面DAE⊥面ABCE.
(1)求證:OF∥面BDE;
(2)求證:AD⊥面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,O為AE的中點,以AE為折痕將
△ADE向上折起,使D到P,且PC=PB
(1)求證:PO⊥面ABCE.(2)求AC與面PAB所成角θ的正弦值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,AB=4cm,BC=2cm,在圖形上隨機撒一粒黃豆,則黃豆落到圓上的概率是
π
8
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在矩形ABCD中,已知AB=a,BC=b.a(chǎn)≤3b,在AB,AD,CD,CB上分別截取AE,AH,CG,CF,且都等于x,則四邊形EFGH面積的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案