14.${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx+${∫}_{1}^{2}$$\frac{1}{x}$dx=$\frac{π}{4}$+ln2.

分析 分別利用定積分的幾何意義以及找出原函數(shù)的方法求定積分即可.

解答 解:原式=$\frac{1}{4}π×{1}^{2}+lnx{|}_{1}^{2}$=$\frac{π}{4}+ln2$;
故答案為:$\frac{π}{4}$+ln2;

點(diǎn)評(píng) 本題考查了定積分的計(jì)算;分別利用了定積分的幾何意義以及找出原函數(shù)求定積分的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ex
(1)求曲線y=f(x)在(1,f(1))處的切線方程;
(2)證明:f(x)>lnx+2,在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{\sqrt{2}}{2}$AD
(1)求證:平面PAB⊥平面PDC.
(2)求點(diǎn)C到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.關(guān)于x的方程(m+3)x2-4mx+2m-1=0的兩根異號(hào),且負(fù)根的絕對(duì)值比正根大,那么實(shí)數(shù)m的取值范圍為( 。
A.(-3,0)B.(0,3)C.(-∞,-3)∪(0,+∞)D.(-∞,0)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在等腰梯形ABCD中,AB=2CD=2,∠DAB=60°,E是AB的中點(diǎn),將△ADE與△BEC分別沿ED,EC向上折起,使A,B重合于點(diǎn)P,若三棱錐P-CDE的各個(gè)頂點(diǎn)在同一球面上,則該球的表面積為( 。
A.$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{6}π}{2}$C.$\frac{\sqrt{6}π}{8}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,在矩形ABCD中,AD=6,AE⊥BD,垂足為E,ED=3BE,點(diǎn)P,Q分別在BD,AD上,
則AP+PQ的最小值為( 。
A.$2\sqrt{2}$B.$\sqrt{2}$C.$2\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ax2-4ax+b(a>0)在區(qū)間[0,1]上有最大值1和最小值-2.
(1)求a,b的值;
(2)若在區(qū)間[-1,1]上,不等式f(x)>-x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程.
(1)與橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1有公共焦點(diǎn),且離心率為2的雙曲線;
(2)中心在坐標(biāo)原點(diǎn),經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)的橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在等差數(shù)列{an}中,已知a3+a9=16,則a5+a7=(  )
A.12B.16C.20D.24

查看答案和解析>>

同步練習(xí)冊(cè)答案