已知A、B是橢圓長軸的兩個端點,M,N是橢圓上關于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2,且k1k2≠0.若|k1|+|k2|的最小值為1,則橢圓的離心率( )
A.
B.
C.
D.
【答案】分析:先假設出點M,N,A,B的坐標,然后表示出兩斜率的關系,再由|k1|+|k2|的最小值為1運用基本不等式的知識可得到當x=0時可取到最小值,進而找到a,b,c的關系,進而可求得離心率的值.
解答:解:設M(x,y),N(x,-y),A(-a,0),B(a,0)
k1=,k2=
|k1|+|k2|=||+||=2=1
當且僅當=,即x=0,y=b時等號成立
∴2=2=1∴a=2b
又因為a2=b2+c2∴c=
∴e=
故選C.
點評:本題主要考查橢圓的基本性質和基本不等式的應用.圓錐曲線是高考的重點問題,基本不等式在解決最值時有重要作用,所以這兩方面的知識都很重要,一定要強化復習.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年江西省宜春市高安中學高二(上)期末數(shù)學試卷(文科)(解析版) 題型:選擇題

已知A、B是橢圓長軸的兩個端點,M,N是橢圓上關于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2,且k1k2≠0.若|k1|+|k2|的最小值為1,則橢圓的離心率( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市學軍中學高三第六次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

已知A、B是橢圓長軸的兩個端點,M,N是橢圓上關于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2,且k1k2≠0.若|k1|+|k2|的最小值為1,則橢圓的離心率( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省沈陽二中等重點中學協(xié)作體高考預測數(shù)學試卷09(理科)(解析版) 題型:選擇題

已知A、B是橢圓長軸的兩個端點,M,N是橢圓上關于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2,且k1k2≠0.若|k1|+|k2|的最小值為1,則橢圓的離心率( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省紹興市高考數(shù)學一模試卷(文科)(解析版) 題型:選擇題

已知A、B是橢圓長軸的兩個端點,M,N是橢圓上關于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2,且k1k2≠0.若|k1|+|k2|的最小值為1,則橢圓的離心率( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案