已知函數(shù)
f1(
x)=
,
f2(
x)=
x+2,
(1)設(shè)
y=
f(
x)=
,試畫出
y=
f(
x)的圖像并求
y=
f(
x)的曲線繞
x軸旋轉(zhuǎn)一周所得幾何體的表面積;
(2)若方程
f1(
x+
a)=
f2(
x)有兩個不等的實根,求實數(shù)
a的范圍.
(3)若
f1(
x)>
f2(
x-
b)的解集為[-1,
],求
b的值.
(1)
y=
f(
x)的曲線繞
x軸旋轉(zhuǎn)一周所得幾何體是由一個半徑為1的半球及底面半徑和高均為1的圓錐體組成,
其表面積為(2+
)
π.
(2)
a的取值范圍為2-
<
a≤1,
(3)
b=
(1)
y=
f(
x)=
的圖像如圖所示.
y=
f(
x)的曲線繞
x軸旋轉(zhuǎn)一周所得幾何體是由一個半徑為1的半球及底面半徑和高均為1的圓錐體組成,
其表面積為(2+
)
π.
(2)當(dāng)
f1(
x+
a)=
f2(
x)有兩個不等實根時,
a的取值范圍為2-
<
a≤1.
(3)若
f1(
x)>
f2(
x-
b)的解集為[-1,
],則可解得
b=
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知函數(shù)
。
(I)當(dāng)
時,函數(shù)
取得極大值,求實數(shù)
的值;
(II)若存在
,使不等式
成立,其中
為
的導(dǎo)函數(shù),求實數(shù)
的取值范圍;
(III)求函數(shù)
的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
某廠在計劃期內(nèi)要安排生產(chǎn)甲、乙兩種產(chǎn)品,這些產(chǎn)品分別需要在
A、
B、
C、
D四種不同的設(shè)備上加工,按工藝規(guī)定,產(chǎn)品甲和產(chǎn)品乙在各設(shè)備上需要的加工臺時數(shù)于下表給出.已知各設(shè)備在計劃期內(nèi)有效臺時數(shù)分別是12,8,16,12(一臺設(shè)備工作一小時稱為一臺時),該廠每生產(chǎn)一件產(chǎn)品甲可得利潤2元,每生產(chǎn)一件產(chǎn)品乙可得利潤3元,問應(yīng)如何安排生產(chǎn)計劃,才能獲得最大利潤??
設(shè)備 產(chǎn)品
| A
| B
| C
| D
|
甲
| 2
| 1
| 4
| 0
|
乙
| 2
| 2
| 0
| 4
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽開______時它的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知定義域為(-1,1)的奇函數(shù)
y=
f(
x)又是減函數(shù),且
f(
a-3)+
f(9-
a2)<0,則
a的取值范圍是( )
A.(2,3) | B.(3,) | C.(2,4) | D.(-2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
二次函數(shù)
f(
x)=
px2+
qx+
r中實數(shù)
p、
q、
r滿足
=0,其中
m>0,求證:
(1)
pf(
)<0;
(2)方程
f(
x)=0在(0,1)內(nèi)恒有解.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
.設(shè)
f(
x)=3
x3-4
x2+10
x-5,則
f′(1)的值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
某市在一次降雨過程中,降雨量
與時間
的函數(shù)關(guān)系可近似地表示為
,則在時刻
的降雨強度為( )
查看答案和解析>>