分析 (1)根據(jù)一元二次方程與不等式的關(guān)系,求出a,c的值,在求解解不等式cx2-2x+a<0即可.
(2)采用“分離參數(shù)法”,再利用基本不等式求其最值即可求m的取值范圍.
解答 解:(1)由題意:不等式ax2+2x+c>0的解集為{x|-$\frac{1}{3}$<x<$\frac{1}{2}$},可知:a<0,
且方程ax2+2x+c=0的兩根為${x}_{1}=-\frac{1}{3}$,${x}_{2}=\frac{1}{2}$
由根與系數(shù)的關(guān)系得:$\left\{\begin{array}{l}{\frac{1}{2}-\frac{1}{3}=-\frac{2}{a}}\\{-\frac{1}{3}×\frac{1}{2}=\frac{c}{a}}\end{array}\right.$,解得:a=-12,c=2.
則:不等式cx2-2x+a<0可化為x2-x-6<0,
解得:-2<x<3.
所以不等式的解集為:{x|-2<x<3}
(2)解:依題意,當x>0時,x2-mx+4>0恒成立等價于不等式$m<x+\frac{4}{x}$恒成立,
設(shè)$f(x)=x+\frac{4}{x},x>0$
只需m<f(x)min
又$f(x)=x+\frac{4}{x}≥2\sqrt{x•\frac{4}{x}}=4$,當且僅當$x=\frac{4}{x}$即x=2時f(x)min=4.
從而m的取值范圍為(-∞,4).
點評 本題考查一元二次方程與一元二次不等式的關(guān)系,考查了“分離參數(shù)法”,與基本不等式的運用解決恒成立的問題.屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{π}{12},\frac{π}{6}}]$ | B. | $[{\frac{π}{6},\frac{π}{2}}]$ | C. | $[{\frac{π}{12},\frac{π}{3}}]$ | D. | $[{\frac{π}{6},\frac{π}{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 方程組有唯一解 | B. | 方程組有唯一解或有無窮多解 | ||
C. | 方程組無解或有無窮多解 | D. | 方程組有唯一解或無解 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com