12.長方體的一個(gè)頂點(diǎn)上三條棱長分別為3、4、5,且它的8個(gè)頂點(diǎn)都在同一球面上,則這個(gè)球的表面積是( 。
A.25πB.50πC.125πD.75π

分析 由題意長方體的外接球的直徑就是長方體的對角線,求出長方體的對角線,就是求出球的直徑,然后求出球的表面積.

解答 解:長方體的一個(gè)頂點(diǎn)上的三條棱長分別是3,4,5,且它的8個(gè)頂點(diǎn)都在同一個(gè)球面上,
所以長方體的對角線就是球的直徑,長方體的對角線為:$\sqrt{9+16+25}$=5$\sqrt{2}$,
所以球的半徑為:$\frac{5\sqrt{2}}{2}$;則這個(gè)球的表面積是:$4π•(\frac{5\sqrt{2}}{2})^{2}$=50π.
故選:B.

點(diǎn)評 本題是基礎(chǔ)題,考查球的內(nèi)接多面體的有關(guān)知識,球的表面積的求法,注意球的直徑與長方體的對角線的轉(zhuǎn)化是本題的解答的關(guān)鍵,考查計(jì)算能力,空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=2cosx({cosx+\sqrt{3}sinx})+a({a∈R})$.
(1)求f(x)的最小正周期;
(2)當(dāng)$x∈[{0,\frac{π}{2}}]$時(shí),f(x)的最小值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列 {an},{bn}滿足 bn=an+an+1,則“數(shù)列{an}為等差數(shù)列”是“數(shù)列{bn}為 等差數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓O的半徑為定長,A是平面上一定點(diǎn),P是圓上任意一點(diǎn),線段AP的垂直平分線l和直線OP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為( 。
A.一個(gè)點(diǎn)B.橢圓
C.雙曲線D.以上選項(xiàng)都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面為邊長為1的正方形,側(cè)棱AA1=2
(1)求直線DC與平面ADB1所成角的大小;
(2)在棱上AA1是否存在一點(diǎn)P,使得二面角A-B1C1-P的大小為30°,若存在,確定P的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.與直線2x+3y-6=0平行且過點(diǎn)(1,-1)的直線方程為2x+3y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列敘述中錯(cuò)誤的是( 。
A.若點(diǎn)P∈α,P∈β且α∩β=l,則P∈l
B.三點(diǎn)A,B,C能確定一個(gè)平面
C.若直線a∩b=A,則直線a與b能夠確定一個(gè)平面
D.若點(diǎn)A∈l,B∈l,且A∈α,B∈α,則l?α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$f(x)=\left\{\begin{array}{l}{log_a}({a{x^2}-4x+4}),x≥1\\({3-a})x+b,x≤1\end{array}\right.$在(-∞,+∞)上滿足$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,則b的取值范圍是( 。
A.(-∞,0)B.[1,+∞)C.(-1,1)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],且a∈(0,1)
(Ⅰ)當(dāng)$a=\frac{1}{2}$時(shí),求f(x)的最小值及此時(shí)x的值;
(Ⅱ)當(dāng)f(x)的最大值不超過3時(shí),求參數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案