已知A(4,0),N(1,0),若點P滿足數(shù)學公式數(shù)學公式=6|數(shù)學公式|.
(1)求點P的軌跡方程,并說明該軌跡是什么曲線;
(2)求|數(shù)學公式|的取值范圍;
(3)若M(-1,0),求∠MPN在[0,π]上的取值范圍.

解:(1)設(shè)P(x,y),=(x-4,y),=(1-x,-y),=(-3,0),
=6||,
∴-3(x-4)=6,即3x2+4y2=12.
=1.∴P點的軌跡是以(-1,0)、(1,0)為焦點,長軸長為4的橢圓.
(2)N(1,0)為橢圓的右焦點,x=4為右準線,
設(shè)P(x0,y0),P到右準線的距離為d,d=4-x0=e=,|PN|=d=
∵-2≤x0≤2,∴1≤|PN|≤3.
當|PN|=1時,P(2,0);當|PN|=3時,P(-2,0).
(3)令|PN|=t(1≤t≤3),
則|PM|=4-t,|MN|=2,
cos∠MPN===-1+
由1≤t≤3,得3≤t(4-t)≤4,
≤cos∠MPN≤1,
∴0≤∠MPN≤
分析:(1)設(shè)出點P(x,y),將=6||用坐標表示出來整理即得點P的軌跡方程;
(2)利用橢圓的第二定義建立關(guān)于||的等式,將||用坐標表示出來,即將||表示成P的坐標的函數(shù),利用函數(shù)的性質(zhì)求即可.
(3)用余弦定理將∠MPN的余弦值表示成關(guān)于||的函數(shù),用函數(shù)的性質(zhì)求求出角的取值范圍.
點評:本題是遞進式的一個題,此特點是后一問要用上前一問的結(jié)論,環(huán)環(huán)相扣,相當緊湊,本題運算量比較大,符號運算較多.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知A(4,0),N(1,0),若點P滿足
AN
AP
=6|
PN
|.
(1)求點P的軌跡方程,并說明該軌跡是什么曲線;
(2)求|
PN
|的取值范圍;
(3)若M(-1,0),求∠MPN在[0,π]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

已知A4,0),N(1,0),若點P滿足·6||,求點P的軌跡方程

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A(4,0),N(1,0),若點P滿足
AN
AP
=6|
PN
|.
(1)求點P的軌跡方程,并說明該軌跡是什么曲線;
(2)求|
PN
|的取值范圍;
(3)若M(-1,0),求∠MPN在[0,π]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2006年高考第一輪復習數(shù)學:5.5 向量的應(yīng)用(解析版) 題型:解答題

已知A(4,0),N(1,0),若點P滿足=6||.
(1)求點P的軌跡方程,并說明該軌跡是什么曲線;
(2)求||的取值范圍;
(3)若M(-1,0),求∠MPN在[0,π]上的取值范圍.

查看答案和解析>>

同步練習冊答案