若不等式組
y≤x
y≥-x
2x-y-3≤0
表示的平面區(qū)域?yàn)镸,x2+y2≤1所表示的平面區(qū)域?yàn)镹,現(xiàn)隨機(jī)向區(qū)域M內(nèi)拋一粒豆子,則豆子落在區(qū)域N內(nèi)的概率為
 
考點(diǎn):幾何概型
專(zhuān)題:概率與統(tǒng)計(jì)
分析:由題意,所求概率滿(mǎn)足幾何概型的概率,只要分別求出M,N的面積,求面積比即可.
解答: 解:由題意區(qū)域M,N表示的圖形如下:
圖中△BCD表示M區(qū)域,扇形BFG表示扇形區(qū)域,其中C(1,-1),D(3,3)M所以SM=
1
2
×BC×BD=
1
2
×
2
×3
2
=3,SN=
1
4
π

所以豆子落在區(qū)域N內(nèi)的概率為
π
4
3
=
π
12

故答案為:
π
12
點(diǎn)評(píng):本題主要考查了幾何概率的求解,以及線(xiàn)性規(guī)劃的知識(shí),屬于簡(jiǎn)單綜合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
x
-x是(  )
A、奇函數(shù)
B、偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿(mǎn)足:a2012=a2011+2a2010,若
aman
=2a1,則
1
m
+
5
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有如下命題:命題p:設(shè)集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分而不必要條件;命題q:“?x0∈R,x02-x0-1>0”的否定是“?x0∈R,x02-x0-1≤0”,則下列命題中為真命題的是( 。
A、p∧qB、p∧(¬q)
C、p∨qD、p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知sinA:sinB:sinC=4:5:8,則△ABC一定為(  )
A、正三角形B、等腰三角形
C、直角三角形D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x>2,則x+
1
x-2
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知菱形ABCD邊長(zhǎng)為2,∠BAD=120°,點(diǎn)E,F(xiàn)分別在邊BC,DC上,
BE
=λ
BC
,
CF
=λ
CD
,若
AE
BF
=-1,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足
x≥1
y≥1
x+y-3≤0
目標(biāo)函數(shù)是z=2x+y,z的最大值是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“直線(xiàn)l∥平面α”是“直線(xiàn)l?平面α”成立的
 
條件 (在“充分不必要”“必要不充分”“充要”“既不充分又不必要”中選填一個(gè)).

查看答案和解析>>

同步練習(xí)冊(cè)答案