10.直線kx-y+1=3k中,無論k如何變動,直線都恒過定點(diǎn)( 。
A.(0,0)B.(0,1)C.(3,1)D.(2,1)

分析 化直線方程為點(diǎn)斜式,由點(diǎn)斜式的特點(diǎn)可得答案.

解答 解:直線方程kx-y+1-3k=0可化為y-1=k(x-3),
由直線的點(diǎn)斜式可知直線過定點(diǎn)(3,1),
故選C.

點(diǎn)評 本題考查直線過定點(diǎn)問題,化直線方程為點(diǎn)斜式是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=|x|+$\frac{a}{x^2}$(其中a∈R)的圖象不可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=1+2cosxcos(x+3φ)是偶函數(shù),其中φ∈(0,$\frac{π}{2}$),則下列關(guān)于函數(shù)g(x)=cos(2x-φ)的正確描述是( 。
A.g(x)在區(qū)間[-$\frac{π}{12},\frac{π}{3}$]上的最小值為-1.
B.g(x)的圖象可由函數(shù)f(x)向上平移2個(gè)單位,在向右平移$\frac{π}{3}$個(gè)單位得到.
C.g(x)的圖象可由函數(shù)f(x)的圖象先向左平移$\frac{π}{3}$個(gè)單位得到.
D.g(x)的圖象可由函數(shù)f(x)的圖象先向右平移$\frac{π}{3}$個(gè)單位得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合M={x∈N|1<x<7},N={x|$\frac{x}{3}$∉N},則M∩N等于( 。
A.{3,6}B.{4,5}C.{2,4,5}D.{2,4,5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.三棱錐P-ABC內(nèi)接于球O,PA=PB=PC=3,當(dāng)三棱錐P-ABC的三個(gè)側(cè)面積和最大時(shí),球O的體積為$\frac{{27\sqrt{3}π}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列各式正確的是( 。
A.$\sqrt{(-5)^{2}}$=-5B.$\root{4}{{a}^{4}}$=aC.$\sqrt{{7}^{2}}$=7D.$\root{3}{(-π)^{3}}$=π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,正方體ABCD-A1B1C1D1中,求異面直線AD1與A1C1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某人在靜水中游泳的速度為$4\sqrt{3}$千米/時(shí),他現(xiàn)在水流速度為4千米/時(shí)的河中游泳.
(Ⅰ)如果他垂直游向河對岸,那么他實(shí)際沿什么方向前進(jìn)?實(shí)際前進(jìn)的速度為多少?
(Ⅱ)他必須朝哪個(gè)方向游,才能沿與水流垂直的方向前進(jìn)?實(shí)際前進(jìn)的速度為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.長度為5的線段AB的兩端點(diǎn)A,B分別在x軸、y軸上滑動,點(diǎn)M在線段AB上,且AM=2,則點(diǎn)M的軌跡方程是$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

同步練習(xí)冊答案