設(shè)an數(shù)學(xué)公式(n=2,3,4,5,…)展開式中x一次項(xiàng)系數(shù),則數(shù)學(xué)公式=________.

18
分析:利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的通項(xiàng),令x的指數(shù)為1,求出an,再由===,能求出
解答:展開式的通項(xiàng)為
得r=2
∴an=3n-2Cn2
===,

={18×}
=
=18.
故答案為:18.
點(diǎn)評(píng):本題考查利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)問題、考查由函數(shù)解析式求函數(shù)值問題.解題時(shí)要注意裂項(xiàng)求和公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

20、設(shè)Sn是數(shù)列{an}(n∈N*)的前n項(xiàng)和,a1=a,且Sn2=3n2an+Sn-12,an≠0,n=2,3,4,….
(1)證明數(shù)列{an+2-an}(n≥2)是常數(shù)數(shù)列;
(2)試找出一個(gè)奇數(shù)a,使以18為首項(xiàng),7為公比的等比數(shù)列{bn}(n∈N*)中的所有項(xiàng)都是數(shù)列{an}中的項(xiàng),并指出bn是數(shù)列{an}中的第幾項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,設(shè)an是Sn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,bn+1=bn+2.
(1)求an,bn;
(2)若數(shù)列{bn}的前n項(xiàng)和為Bn,比較
1
B1
+
1
B2
+…+
1
Bn
與2的大;
(3)令Tn=
b1
a1
+
b2
a2
+…+
bn
an
,是否存在正整數(shù)M,使得Tn<M對(duì)一切正整數(shù)n都成立?若存在,求出M的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市崇明縣高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)an(n=2,3,4,5,…)展開式中x一次項(xiàng)系數(shù),則=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,設(shè)an是Sn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,bn+1=bn+2.

(1)求an,bn;

(2)若數(shù)列{bn}的前n項(xiàng)和為Bn,比較+…+與2的大。

(3)令Tn=+…+,是否存在正整數(shù)M,使得Tn<M對(duì)一切正整數(shù)n都成立?若存在,求出M的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案