已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓C的離心率為,點(diǎn)A,B分別是橢圓C的長軸、短軸的端點(diǎn),點(diǎn)O到直線AB的距離為
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)E(3,0),設(shè)點(diǎn)P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),滿足EP⊥EQ,求的取值范圍.

【答案】分析:(1)先利用離心率為得到關(guān)于a,b,c之間的關(guān)系,再結(jié)合點(diǎn)O到直線AB的距離為,即可求出a,b,c,進(jìn)而得到橢圓C的標(biāo)準(zhǔn)方程;
(2)先利用EP⊥EQ把所求問題轉(zhuǎn)化為,再利用點(diǎn)P在拋物線上,利用拋物線上的點(diǎn)的范圍限制即可求出的取值范圍.
解答:解:(1)由離心率,得∴a=2b①
∵原點(diǎn)O到直線AB的距離為
②,
將①代入②,得b2=9,∴a2=36
則橢圓C的標(biāo)準(zhǔn)方程為
(2)∵EP⊥EQ∴

設(shè)P(x,y),則,即

∵-6≤x≤6,∴
的取值范圍為[6,81].
點(diǎn)評:本題主要考查直線與圓錐曲線的綜合問題.解決第一問的關(guān)鍵是利用條件列出關(guān)于a,b,c之間的方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:山東省濟(jì)寧市2012屆高二下學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分) 已知在平面直角坐標(biāo)系xoy中的一個(gè)橢圓,它的中心在原

點(diǎn),左焦

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;

(3)過原點(diǎn)O的直線交橢圓于點(diǎn)B、C,求△ABC面積的最大值。

 

查看答案和解析>>

同步練習(xí)冊答案