分析 (1)利用三角函數恒等變換的應用化簡函數解析式可得f(x)=2sin(2x-$\frac{π}{3}$),利用周期公式即可計算得解.
(2)由已知可求-$\frac{π}{3}$≤2x-$\frac{π}{3}$≤$\frac{π}{3}$,利用正弦函數的性質即可得解f(x)的值域.
解答 解:(1)∵f(x)=-$\sqrt{3}$(cos2x-sin2 x)+2sinxcosx
=-$\sqrt{3}$cos 2x+sin 2x=2sin(2x-$\frac{π}{3}$),
∴f(x)的最小正周期為π.
(2)∵x∈[0,$\frac{π}{3}$],
∴-$\frac{π}{3}$≤2x-$\frac{π}{3}$≤$\frac{π}{3}$,
∴-$\frac{\sqrt{3}}{2}$≤sin(2x-$\frac{π}{3}$)≤$\frac{\sqrt{3}}{2}$,
∴-$\sqrt{3}$≤2sin(2x-$\frac{π}{3}$)≤$\sqrt{3}$,
∴值域為[-$\sqrt{3}$,$\sqrt{3}$].
點評 本題主要考查了三角函數恒等變換的應用,周期公式,正弦函數的圖象和性質,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 12個 | B. | 8個 | C. | 6個 | D. | 4個 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | “p且q”為真 | B. | “p或q”為真 | C. | p假q真 | D. | p,q均為假命題 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com