不等式(x-1)(x-2)≥0的解集等于( 。
A、{x|1≤x≤2}
B、{x|x≥2或x≤1}
C、{x|1<x<2}
D、{x|x>1或x<2}
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:由對(duì)應(yīng)二次函數(shù)和二次方程可得不等式的解集.
解答: 解:∵二次函數(shù)y=(x-1)(x-2)的圖象開(kāi)口向上,
又∵二次方程(x-1)(x-2)=0的兩根為1和2,
∴不等式(x-1)(x-2)≥0的解集為:{x|x≥2或x≤1},
故選:B
點(diǎn)評(píng):本題考查一元二次不等式的解集,利用三個(gè)二次的關(guān)系是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式的值:
(1)(
9
4
)
1
2
-(-
3
5
)0
-(
8
27
)-
1
3
;             
(2)log2.56.25+lg
1
100
+ln
e
+21+log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為豐富農(nóng)村業(yè)余文化生活,決定在A,B,N三個(gè)村子的中間地帶建造文化中心.通過(guò)測(cè)量,發(fā)現(xiàn)三個(gè)村子分別位于矩形ABCD的兩個(gè)頂點(diǎn)A,B和以邊AB的中心M為圓心,以MC長(zhǎng)為半徑的圓弧的中心N處,且AB=8km,BC=4
2
km.經(jīng)協(xié)商,文化服務(wù)中心擬建在與A,B等距離的O處,并建造三條道路AO,BO,NO與各村通達(dá).若道路建設(shè)成本AO,BO段為每公里
2
a萬(wàn)元,NO段為每公里a萬(wàn)元,建設(shè)總費(fèi)用為w萬(wàn)元.
(1)若三條道路建設(shè)的費(fèi)用相同,求該文化中心離N村的距離;
(2)若建設(shè)總費(fèi)用最少,求該文化中心離N村的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=2-|x|-c的圖象與x軸有公共點(diǎn),則實(shí)數(shù)c的職值范圍是(  )
A、[一1,0)
B、[0,1]
C、(0,1]
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖的程序運(yùn)行后,輸出a的值是( 。
A、8B、7C、6D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=|log3x|的極值點(diǎn)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)對(duì)一切實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y),f(1)=-2,當(dāng)x>0時(shí),f(x)<0.
(1)證明f(x)為R上的減函數(shù);
(2)解不等式f(x-1)-f(1-2x-x2)<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x3+2x2-1,求x<0時(shí),f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=ax+b-1(a>0且a≠1)的圖象不經(jīng)過(guò)第一象限,則有( 。
A、a>1且b≤0
B、a>1且b≤1
C、0<a<1且b≤0
D、0<a<1且b≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案