思路分析:要比較兩式大小,可作差后與0比較大小,另考慮到本題兩式均大于零,故也可考慮作商后與1比較大小.
解法一:ab(a+b)+bc(b+c)+ac(a+c)-6abc
=a2b+ab2+b2c+bc2+a2c+ac2-6abc
=(a2b+bc2-2abc)+(ab2+ac2-2abc)+(b2c+a2c-2abc)
=b(a2+c2-2ac)+a(b2+c2-2bc)+c(b2+a2-2ab)
=b(a-c)2+a(b-c)2+c(b-a)2.
∵a,b,c為互不相等的正數(shù),∴上式>0.
∴ab(a+b)+bc(b+c)+ac(a+c)>6abc.
解法二:.
=
∵a2+c2-2ac=(a-c)2>0(a≠c),
∴(ac>0).
同理,可得.
∴上式>16×(2+2+2)=1.
∵6abc>0,
∴ab(a+b)+bc(b+c)+ac(a+c)>6abc.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
1 |
a |
1 |
b |
1 |
c |
a |
b |
c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
4 |
1 |
4 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com