6.△ABC中,B=45°,C=60°,c=1,則b等于$\frac{\sqrt{6}}{3}$.

分析 利用正弦定理即可得出.

解答 解:由正弦定理可得:$\frac{sin4{5}^{°}}=\frac{1}{sin6{0}^{°}}$,解得b=$\frac{\sqrt{6}}{3}$.
故答案為:$\frac{\sqrt{6}}{3}$.

點(diǎn)評(píng) 本題考查了正弦定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.三視圖如圖所示的幾何體的體積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.六個(gè)人按下列要求站成一排,分別有多少種不同的站法?
(1)甲、乙必須相鄰;
(2)甲、乙不相鄰;
(3)甲、乙之間恰有兩人;
(4)甲不站在左端,乙不站在右端.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}滿足an=$\left\{\begin{array}{l}n\;\;\;(n=1,2,3,4)\\-{a_{n-4}}(n≥5,n∈N)\end{array}\right.$,則a2013=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=alnx+$\frac{1}{x}$+$\frac{1}{{2{x^2}}}$.
(1)當(dāng)a=2時(shí),
①討論函數(shù)f(x)的單調(diào)性;
②求證:2lnx-x-$\frac{x^2}{2}$≤-$\frac{3}{2}$;
(2)證明:(x-1)(e-x-x)+2lnx<$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合A={x|ax2-3x+2=0,x∈R,a∈R}有兩個(gè)子集,則a=0或$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.寫出“x<0”的一個(gè)必要非充分條件是x<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知偶函數(shù)f(x)在[0,+∞)單調(diào)遞減,若f(x-2)>f(3),則x的取值范圍是(-1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,已知$\overrightarrow{OA}$=(3,-1),$\overrightarrow{OB}$=(0,2),若$\overrightarrow{OC}$⊥$\overrightarrow{AB}$,$\overrightarrow{AC}$=λ$\overrightarrow{OB}$,則實(shí)數(shù)λ的值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案