如圖所示,PA為圓的切線,A為切點(diǎn),PBC是過(guò)點(diǎn)O的割線,PA=10,PB=5,的平分線與BC和圓分別交于點(diǎn)D和E。

(1)求證:;

(2)求AD·AE的值。

 

【答案】

( 1)直接根據(jù)∠PAB=∠ACP以及∠P公用,得到△PAB∽△PCA,進(jìn)而求出結(jié)論;

(2)90

【解析】

試題分析:( I)直接根據(jù)∠PAB=∠ACP以及∠P公用,得到△PAB∽△PCA,進(jìn)而求出結(jié)論;

( II)先根據(jù)切割線定理得到PA2=PB?PC;結(jié)合第一問(wèn)的結(jié)論以及勾股定理求出;再結(jié)合條件得到△ACE∽△ADB,進(jìn)而求出結(jié)果.

解:( I)∵PA為⊙O的切線,

∴∠PAB=∠ACP,…(1分)

又∠P公用,∴△PAB∽△PCA.…(2分)

.…(3分)

( II)∵PA為⊙O的切線,PBC是過(guò)點(diǎn)O的割線,

∴PA2=PB?PC.…(5分)

又∵PA=10,PB=5,∴PC=20,BC=15.…(6分)

由( I)知,,

∵BC是⊙O的直徑,

∴∠CAB=90°.

∴AC2+AB2=BC2=225,

 …(7分)

連接CE,則∠ABC=∠E,…(8分)

又∠CAE=∠EAB,

∴△ACE∽△ADB,

 …(9分)

.…(10分)

 

考點(diǎn):與圓有關(guān)的比例線段、相似三角形

點(diǎn)評(píng):本題主要考查與圓有關(guān)的比例線段、相似三角形的判定及切線性質(zhì)的應(yīng)用.解決本題第一問(wèn)的關(guān)鍵在于先由切線PA得到∠PAB=∠ACP.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知圓E:x2+(y-1)2=4交x軸分別于A,B兩點(diǎn),交y軸的負(fù)半軸于點(diǎn)M,過(guò)點(diǎn)M作圓E的弦MN.
(1)若弦MN所在直線的斜率為2,求弦MN的長(zhǎng);
(2)若弦MN的中點(diǎn)恰好落在x軸上,求弦MN所在直線的方程;
(3)設(shè)弦MN上一點(diǎn)P(不含端點(diǎn))滿足PA,PO,PB成等比數(shù)列(其中O為坐標(biāo)原點(diǎn)),試探求
PA
PB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,AB是圓O的直徑,PA垂直于圓O所在的平面,M是圓周上異于A、B的任意一點(diǎn),AN⊥PM,點(diǎn)N為垂足,求證:AN⊥平面PBM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,AB是圓O的直徑,PA垂直于圓O所在的平面,M是圓周上異于A、B的任意一點(diǎn),ANPM,點(diǎn)N為垂足,求證:AN⊥平面PBM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇期末題 題型:解答題

如圖所示,已知圓E:x2+(y﹣1)2=4交x軸分別于A,B兩點(diǎn),交y軸的負(fù)半軸于點(diǎn)M,過(guò)點(diǎn)M作圓E的弦MN.
(1)若弦MN所在直線的斜率為2,求弦MN的長(zhǎng);
(2)若弦MN的中點(diǎn)恰好落在x軸上,求弦MN所在直線的方程;
(3)設(shè)弦MN上一點(diǎn)P(不含端點(diǎn))滿足PA,PO,PB成等比數(shù)列(其中O為坐標(biāo)原點(diǎn)),試探求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案