(1)求值tan10°-1);

(2)求值[2sin50°+sin10°1+tan10°)]·

?

(1)解法一:原式=(tan10°-tan60°)==·=·=·=-2.

解法二:原式=(tan10°-tan60°)·

=-tan50°(1+tan10°tan60°)

=(cos10°+sin10°)

=-cos10°+sin10°)

=-cos50°

=-2.

(2)解:原式=(2sin50°+sin10°·)·sin80°

=[2sin50°+2sin10°··sin80°

=[2sin50°+2sin10°·]·sin80°

=·sin80°

=·cos10°

=2·sin(50°+10°)=2·sin60°=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂必修四數(shù)學(xué)蘇教版 蘇教版 題型:044

求值:(1+tan1°)(1+tan2°)…(1+tan44°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

求值:(1+tan1°)(1+tan2°)…(1+tan44°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:(1+tan1°)·(1+tan2°)·…·(1+tan44°)·(1+tan45°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不通過求值,比較下列各組中兩個正切值的大小.

(1)tan(-)與tan(-).

(2)tan1,tan2,tan3,tan4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求(1+tan1°)(1+tan2°)(1+tan3°)…(1+tan44°)(1+tan45°)的值.

查看答案和解析>>

同步練習(xí)冊答案