若函數(shù)f(x)=2sinωx(ω>0)在時取得最小值,則ω的最小值是( )
A.1
B.2
C.3
D.4
【答案】分析:由f(x)=2sinωx(ω>0)在時取得最小值,知ω×=+2kπ,k∈Z.由此能求出ω的最小值.
解答:解:∵f(x)=2sinωx(ω>0)在時取得最小值,
∴ω×=+2kπ,k∈Z.
當k=0時,ω取最小值2.
故選B.
點評:本題考查三角函數(shù)的恒等式變換的應(yīng)用,是基礎(chǔ)題.解題時要認真審題,注意熟練掌握基本概念.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

12、定義在R上的函數(shù)y=f(x)是增函數(shù),且為奇函數(shù),若實數(shù)s,t滿足不等式f(s2-2s)≥-f(2t-t2),則當1≤s≤4時,3t+s的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)y=f(x)是減函數(shù),且函數(shù)y=f(x-1)的圖象關(guān)于(1,0)成中心對稱,若s,t滿足不等式f(s2-2s)≤-f(2t-t2).則當1≤s≤4時,
t
s
的取值范圍是( 。
A、[-
1
2
,1)
B、[-
1
4
,1)
C、[-
1
2
,1]
D、[-
1
4
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

12、定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-3)的圖象關(guān)于(3,0)成中心對稱,若s,t滿足不等式f(s2-2s)≥-f(2t-t2),則當1≤s≤4時,3t+s的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)y=f(x)是減函數(shù),y=f(x-1)的圖象關(guān)于(1,0)成中心對稱,若s,t滿足不等式f(s2-2s)≤-f(2t-t2),則當1≤s≤4時,
t
s
的取值范圍是
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)y=f(x)是減函數(shù),且函數(shù)y=f(x-1)的圖象關(guān)于(1,0)成中心對稱,若實數(shù)s滿足不等式f(s2-2s)+f(2-s)≤0,則s的取值范圍是
(-∞,1]∪[2,+∞)
(-∞,1]∪[2,+∞)

查看答案和解析>>

同步練習冊答案