精英家教網 > 高中數學 > 題目詳情

【題目】某校的一個社會實踐調查小組,在對該校學生的良好“用眼習慣”的調查中,隨機發(fā)放了120分問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:

做不到科學用眼

能做到科學用眼

合計

45

10

55

30

15

45

合計

75

25

100

(1)現按女生是否能做到科學用眼進行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機抽取3份,并記其中能做到科學用眼的問卷的份數,試求隨機變量的分布列和數學期望;

(2)若在犯錯誤的概率不超過的前提下認為良好“用眼習慣”與性別有關,那么根據臨界值表,最精確的的值應為多少?請說明理由.

附:獨立性檢驗統(tǒng)計量,其中.

獨立性檢驗臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

【答案】(1)分布列見解析, ;(2

【解析】試題分析:(1)分層從份女生問卷中抽取了份問卷,其中科學用眼人,不科學用眼人,若從這份問卷中隨機抽取份,隨機變量.利用超幾何分布即可得出分布列及其數學期望;(2)根據獨立性檢驗的基本思想的應用計算公式可得的觀測值,即可得出.

試題解析:(1科學用眼人,不科學用眼人.

則隨機變量

,,

分布列為


0

1

2





2

由表可知270630303840;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某市英才中學的一個社會實踐調查小組,在對中學生的良好“光盤習慣”的調查中,隨機發(fā)放了120份問卷,對收回的120份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:

做不到光盤

能做到光盤

合計

45

10

55

30

15

45

合計

75

25

100

(1)現已按是否能做到光盤分層從45份女生問卷中抽取9份問卷,若從這9份問卷中隨機抽取4份,并記其中能做到光盤的問卷的份數為,試求隨機變量的分布列和數學期望;

(2)如果認為良好“光盤習慣”與性別有關犯錯誤的概率不超過,那么根據臨界值表最精確的的值應為多少?請說明理由.

附:獨立性檢驗統(tǒng)計量,其中.

獨立性檢驗臨界表:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,的中點.

(1),求證:;

(2),且,點在線段上,試確定點的位置,使二面角大小為,并求出的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現安排甲乙丙丁戊5名學生分別擔任語文、數學、英語、物理、化學學科的科代表,要求甲不當語文科代表,乙不當數學科代表,若丙當物理科代表則丁必須當化學科代表,則不同的選法共有多少種( )

A. 53 B. 67 C. 85 D. 91

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數方程為為參數),直線與曲線相交于兩點.

1)寫出曲線的直角坐標方程和直線的普通方程;

2)若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, .

(Ⅰ)當時,求不等式的解集;

(Ⅱ)若, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩企業(yè)生產同一種型號零件,按規(guī)定該型號零件的質量指標值落在內為優(yōu)質品.從兩個企業(yè)生產的零件中各隨機抽出了500件,測量這些零件的質量指標值,得結果如下表:

甲企業(yè):

乙企業(yè):

(1)已知甲企業(yè)的500件零件質量指標值的樣本方差,該企業(yè)生產的零件質量指標值服從正態(tài)分布,其中近似為質量指標值的樣本平均數(注:求時,同一組數據用該區(qū)間的中點值作代表),近似為樣本方差,試根據該企業(yè)的抽樣數據,估計所生產的零件中,質量指標值不低于71.92的產品的概率.(精確到0.001)

(2)由以上統(tǒng)計數據完成下面列聯(lián)表,并問能否在犯錯誤的概率不超過0.01的前提下,認為“兩個分廠生產的零件的質量有差異”.

附注:

參考數據: ,

參考公式: ,

.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近幾年來,我國許多地區(qū)經常出現干旱現象,為抗旱經常要進行人工降雨,現由天氣預報得知,某地在未來5天的指定時間的降雨概率是:前3天均為,后2天均為,5天內任何一天的該指定時間沒有降雨,則在當天實行人工降雨,否則,當天不實施人工降雨.

(1)求至少有1天需要人工降雨的概率;

(2)求不需要人工降雨的天數的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間有關系,某農科所對此關系進行了調查分析,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天100顆種子中的發(fā)芽數,得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

10

11

13

12

8

發(fā)芽數

23

25

30

26

16

該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.

(1)求選取的2組數據恰好是不相鄰2天數據的概率;

(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出關于的線性回歸方程;

(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(參考公式:

查看答案和解析>>

同步練習冊答案