設(shè)命題p:函數(shù)y=sin2x的最小正周期為
π
2
;命題q:函數(shù)y=2x+
1
2x
是偶函數(shù).則下列判斷正確的是( 。
分析:先根據(jù)正弦函數(shù)的最小正周期判斷命題P是否正確,根據(jù)偶函數(shù)的定義判斷命題q是否正確,再利用復(fù)合命題真值表判斷命題¬q、P∧q、PⅤq的真假即可.
解答:解:∵函數(shù)y=sin2x的最小正周期為π,∴命題P為假命題;
∵f(-x)=2-x+
1
2-x
=
1
2x
+2x=f(x),函數(shù)是偶函數(shù),∴命題q為真命題,
根據(jù)復(fù)合命題真值表,¬q為假命題,故B錯誤;P∧q為假命題,故C錯誤;PⅤq為真命題,故D正確.
故選D.
點(diǎn)評:本題考查復(fù)合命題的真假判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有以下五個命題
①設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,
π
4
],則點(diǎn)P到曲線y=f(x)對稱軸距離的取值范圍為[0,
1
2a
];
②一質(zhì)點(diǎn)沿直線運(yùn)動,如果由始點(diǎn)起經(jīng)過t稱后的位移為s=
1
3
t3-
3
2
t2+2t
,那么速度為零的時刻只有1秒末;
③若函數(shù)f(x)=loga(x3-ax)(a>0,且a≠1)在區(qū)間(-
1
2
,0)
內(nèi)單調(diào)遞增,則a的取值范圍是[
3
4
,1)
;
④定義在R上的偶函數(shù)f(x),滿足f(x+1)=-f(x),則f(x)的圖象關(guān)于x=1對稱;
⑤函數(shù)y=f(x-2)和y=f(2-x)的圖象關(guān)于直線x=2對稱.其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:函數(shù)f(x)=
1
3
(1-x)
且|f(a)|<2,命題Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅,
(1)分別求命題P、Q為真命題時的實數(shù)a的取值范圍;
(2)當(dāng)實數(shù)a取何范圍時,命題P、Q中有且僅有一個為真命題;
(3)設(shè)P、Q皆為真時a的取值范圍為集合S,T={y|y=x+
m
x
,x∈R,x≠0,m>0}
,若?RT⊆S,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題P:函數(shù)f(x)=
1
3
(1-x)
且|f(a)|<2,命題Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅,
(1)分別求命題P、Q為真命題時的實數(shù)a的取值范圍;
(2)當(dāng)實數(shù)a取何范圍時,命題P、Q中有且僅有一個為真命題;
(3)設(shè)P、Q皆為真時a的取值范圍為集合S,T={y|y=x+
m
x
,x∈R,x≠0,m>0}
,若?RT⊆S,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案