【題目】已知函數(shù)f(x)=sinxsin x. (Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

【答案】解:(Ⅰ)∵f(x)=sinxsin x

= sin2x+ ×

=sin(2x+ )+ ,

∴f(x)的最小正周期T= =π.

(Ⅱ)∵f(x)=sin(2x+ )+ ,

∴令2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,解得:kπ﹣ ≤x≤kπ+ ,k∈Z,

∴可得f(x)的單調(diào)遞增區(qū)間為:[kπ﹣ ,kπ+ ],k∈Z


【解析】(Ⅰ)利用三角函數(shù)恒等變換的應(yīng)用化簡可得函數(shù)解析式為f(x)=sin(2x+ )+ ,利用周期公式即可計算得解.(Ⅱ)由于f(x)=sin(2x+ )+ ,令2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,即可解得單調(diào)遞增區(qū)間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,則k的取值范圍是(
A.(2,+∞)
B.(1,+∞)
C.( ,+∞)
D.( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四種說法正確的是( )
①函數(shù)f(x)的定義域是R,則“x∈R,f(x+1)>f(x)”是“函數(shù)f(x)為增函數(shù)”的充要條件;
②命題“ ”的否定是“ ”;
③命題“若x=2,則x2﹣3x+2=0”的逆否命題是真命題;
④p:在△ABC中,若cos2A=cos2B,則A=B;q:y=sinx在第一象限是增函數(shù),則p∧q為真命題.
A.①②③④
B.②③
C.③④
D.③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求證:
(3)判斷曲線y=f(x)是否位于x軸下方,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列{an},記T={x|x=aj﹣ai , i<j},若數(shù)列{an}滿足:“存在t∈T,使得只要am﹣ak=t(m,k∈N*且m>k),必有am+1﹣ak+1=t”,則稱數(shù)列{an}具有性質(zhì)P(t). (Ⅰ)若數(shù)列{an}滿足 判斷數(shù)列{an}是否具有性質(zhì)P(2)?是否具有性質(zhì)P(4)?
(Ⅱ)求證:“T是有限集”是“數(shù)列{an}具有性質(zhì)P(0)”的必要不充分條件;
(Ⅲ)已知{an}是各項為正整數(shù)的數(shù)列,且{an}既具有性質(zhì)P(2),又具有性質(zhì)P(5),求證:存在整數(shù)N,使得aN , aN+1 , aN+2 , …,aN+k , …是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,他在《數(shù)學(xué)九章》中提出的多項式的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖是事項該算法的程序框圖,執(zhí)行該程序框圖,若輸入n,x的值分別為4,2,則輸出v的值為(
A.5
B.12
C.25
D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐S﹣ABCD的底面ABCD是正方形,各側(cè)棱長與底面的邊長均相等,M為SA的中點(diǎn),則直線BM與SC所成的角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 若存在互不相同的四個實數(shù)0<a<b<c<d滿足f(a)=f(b)=f(c)=f(d),則ab+c+2d的取值范圍是( )
A.( ,
B.( ,15)
C.[ ,15]
D.( ,15)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并根據(jù)函數(shù)單調(diào)性的定義證明.

查看答案和解析>>

同步練習(xí)冊答案