【題目】在棱長為2的正方體ABCD﹣A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是DD1的中點(diǎn),
(1)求證:CF∥平面A1DE;
(2)求二面角A1﹣DE﹣A的余弦值.
【答案】
(1)解:分別以DA,DC,DD1為x軸,y軸,z軸建立空間直角坐標(biāo)系,
則A(2,0,0),A1(2,0,2),E(1,2,0),
D(0,0,0),C(0,2,0),F(xiàn)(0,0,1),則 =(2,0,2), =(1,2,0).
設(shè)平面A1DE的法向量是 ,
由 ,取 =(﹣2,1,2).
由 =(0,﹣2,1),得 ,所以CF∥平面A1DE.
(2)面DEA的一個法向量為 .
cos< , >= .
∴面角A1﹣DE﹣A的余弦值為 .
【解析】先分別以DA,DC,DD1為x軸,y軸,z軸建立空間直角坐標(biāo)系,則A(2,0,0),A1(2,0,2),E(1,2,0),D(0,0,0),C(0,2,0),F(xiàn)(0,0,1),再寫出向量 , ,的坐標(biāo),求出平面A1DE的法向量 .(1)利用向量坐標(biāo)之間的關(guān)系證得 ,從而得出CF∥平面A1DE.(2)利用法向量,利用向量的夾角公式求二面角A1﹣DE﹣A的余弦值.
【考點(diǎn)精析】掌握直線與平面平行的判定是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某算法的程序框圖如圖所示,其中輸入的變量在1,2,3,…,24這24個整數(shù)中等可能隨機(jī)產(chǎn)生.
(Ⅰ)分別求出按程序框圖正確編程運(yùn)行時輸出的值為的概率 (=1,2,3);
(Ⅱ)甲、乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編寫程序重復(fù)運(yùn)行n次后,統(tǒng)計記錄了輸出的值為 (=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計表(部分)
運(yùn)行 次數(shù)n | 輸出y的值 為1的頻數(shù) | 輸出y的值 為2的頻數(shù) | 輸出y的值 為3的頻數(shù) |
30 | 14 | 6 | 10 |
… | … | … | … |
2 100 | 1 027 | 376 | 697 |
乙的頻數(shù)統(tǒng)計表(部分)
運(yùn)行 次數(shù)n | 輸出y的值 為1的頻數(shù) | 輸出y的值 為2的頻數(shù) | 輸出y的值 為3的頻數(shù) |
30 | 12 | 11 | 7 |
… | … | … | … |
2 100 | 1 051 | 696 | 353 |
當(dāng)n=2100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出的值為 (=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編寫程序符合算法要求的可能性較大.
(Ⅲ)將按程序框圖正確編寫的程序運(yùn)行3次,求輸出的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B為相互獨(dú)立事件,下列命題中正確的是( )
A.A與B是對立事件
B.A與B是互斥事件
C.A與 是相互獨(dú)立事件
D. 與 不相互獨(dú)立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是橢圓的左、右焦點(diǎn),離心率為,分別是橢圓的上、下頂點(diǎn),.
(1)求橢圓的方程;
(2)過作直線與交于兩點(diǎn),求三角形面積的最大值(是坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面,,底面是梯形,,,.
(1)求證:平面平面;
(2)設(shè)為棱上一點(diǎn),,試確定的值使得二面角為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4—4:坐標(biāo)系與參數(shù)方程】
將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線與C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校設(shè)計了一個實(shí)驗(yàn)考察方案:考生從6道備選題中隨機(jī)抽取3道題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作,規(guī)定:至少正確完成其中的2道題便可通過.己知6道備選題中考生甲有4道能正確完成,2道題不能完成;考生乙每題正確完成的概率都是 ,且每題正確完成與否互不影響.
(I) 求甲考生通過的概率;
(II) 求甲、乙兩考生正確完成題數(shù)的概率分布列,和甲、乙兩考生的數(shù)學(xué)期望;
(Ⅲ)請分析比較甲、乙兩考生的實(shí)驗(yàn)操作能力.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在無窮數(shù)列中,,對于任意,都有,. 設(shè), 記使得成立的的最大值為.
(1)設(shè)數(shù)列為1,3,5,7,,寫出,,的值;
(2)若為等差數(shù)列,求出所有可能的數(shù)列;
(3)設(shè),,求的值.(用表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com