13.已知f(x)=$\frac{a•{2}^{x}+a+2}{{2}^{x}+1}$(x∈R),若f(x)滿足f(-x)=-f(x).
(1)求實(shí)數(shù)a的值;
(2)證明f(x)是R上的單調(diào)減函數(shù)(定義法).

分析 (1)由題意可得函數(shù)f(x)為奇函數(shù),故有f(0)=0,求得a=-1,可得f(x)的解析式.
(2)在R任取兩個(gè)實(shí)數(shù)x1和x2,且x1<x2,證明f(x1)>f(x2),即可證得f(x)在R上單調(diào)遞減.

解答 解:(1)∵f(x)=$\frac{a•{2}^{x}+a+2}{{2}^{x}+1}$(x∈R),若f(x)滿足f(-x)=-f(x),故函數(shù)f(x)為奇函數(shù),
故有f(0)=0,即$\frac{2a+2}{2}$=0,∴a=-1,f(x)=$\frac{1{-2}^{x}}{1{+2}^{x}}$=-$\frac{{2}^{x}+1-2}{{2}^{x}+1}$=-1+$\frac{2}{{2}^{x}+1}$.
(2)在R上任取兩個(gè)數(shù)x1、x2,且x1<x2,
 f(x1)-f(x2)=(-1+$\frac{2}{{2}^{{x}_{1}}+1}$)-(-1+$\frac{2}{{2}^{{x}_{2}}+1}$)=$\frac{2•{(2}^{{x}_{2}}{-2}^{{x}_{1}})}{{(2}^{{x}_{1}}+1)•{(2}^{{x}_{2}}+1)}$,
∵x1<x2,∴0<${2}^{{x}_{1}}$<${2}^{{x}_{2}}$,∴${2}^{{x}_{2}}$-${2}^{{x}_{1}}$>0,${2}^{{x}_{1}}$+1>0,${2}^{{x}_{2}}$+1>0,
∴$\frac{2•{(2}^{{x}_{2}}{-2}^{{x}_{1}})}{{(2}^{{x}_{1}}+1)•{(2}^{{x}_{2}}+1)}$>0,∴f(x1)-f(x2)>0,即 f(x1)>f(x2),
故函數(shù)f(x)在R上單調(diào)遞減.

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性的定義和性質(zhì),用定義證明函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|-1≤x≤2},B={|x|x<1},則A∪(∁RB)等于( 。
A.{x|x≥1}B.{x|x≥-1}C.{x|-1≤x≤2}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,a,b,c是角A,B,C對(duì)應(yīng)的邊,向量$\overrightarrow{m}$=(a+b,-c),$\overrightarrow{n}$=(a+b,c),且$\overrightarrow{m}$•$\overrightarrow{n}$=(2+$\sqrt{3}$)ab.
(1)求角C
(2)函數(shù)f(x)=2sin(A+B)cos2(ωx)-cos(A+B)sin(2ωx)-$\frac{1}{2}$(ω>0)的相鄰兩條對(duì)稱軸分別為x=x0,x=x0+$\frac{π}{2}$,求f(x)在區(qū)間[-π,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=2x+x-5,那么方程f(x)=0的解所在區(qū)間是(n,n+1),則n=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.銷售甲、乙兩種商品所得利潤(rùn)分別是P(單位:萬元)和Q(單位:萬元),它們與投入資金t(單位:萬元)的關(guān)系有經(jīng)驗(yàn)公式P=$\frac{1}{5}$t,Q=$\frac{3}{5}\sqrt{t}$.今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對(duì)甲種商品投資x(單位:萬元),
(1)試建立總利潤(rùn)y(單位:萬元)關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)對(duì)甲種商品投資x(單位:萬元)為多少時(shí)?總利潤(rùn)y(單位:萬元)值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)是定義在R上的函數(shù),滿足f(x)=-f(-x),且當(dāng)x<0時(shí),f(x)=x•$\root{3}{-1-x}$,則f(9)=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{{x}^{2}+ax+4}{x}$(a>0).
(1)證明函數(shù)f(x)在(0,2]上是減函數(shù),(2,+∞)上是增函數(shù);
(2)若方程f(x)=0有且只有一個(gè)實(shí)數(shù)根,判斷函數(shù)g(x)=f(x)-4的奇偶性;
(3)在(2)的條件下探求方程f(x)=m(m≥8)的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤$\frac{π}{2}}$),其圖象與直線y=-1相鄰兩個(gè)交點(diǎn)的距離為π,若f(x)>1對(duì)?x∈(-$\frac{π}{12}$,$\frac{π}{3}}$)恒成立,則φ的取值范圍是( 。
A.$[{\frac{π}{12},\frac{π}{6}}]$B.$[{\frac{π}{6},\frac{π}{2}}]$C.$[{\frac{π}{12},\frac{π}{3}}]$D.$[{\frac{π}{6},\frac{π}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=|x-a|+|x-5|.
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)如果對(duì)任意的實(shí)數(shù)x,都有f(x)≥1成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案