【題目】已知橢圓的左焦點(diǎn),點(diǎn)在橢圓.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)經(jīng)過(guò)圓上一動(dòng)點(diǎn)作橢圓的兩條切線,切點(diǎn)分別記為,,直線分別與圓相交于異于點(diǎn),兩點(diǎn).

i)當(dāng)直線的斜率都存在時(shí),記直線的斜率分別為,.求證:;

ii)求的取值范圍.

【答案】(Ⅰ);(Ⅱ)(i)證明見解析;(ii.

【解析】

(Ⅰ)把點(diǎn)代入橢圓方程,結(jié)合,,即可求得橢圓的標(biāo)準(zhǔn)方程.

(Ⅱ)(i)設(shè)點(diǎn) ,寫出切線方程,聯(lián)立方程組,再由,結(jié)合韋達(dá)定理,寫出的表達(dá)式,化簡(jiǎn)得出結(jié)果;

ii)設(shè)點(diǎn),,進(jìn)而求得直線的直線方程,結(jié)合兩條直線的形式,可寫出直線的方程,運(yùn)用弦長(zhǎng)公式求得,結(jié)合的范圍,可求得的取值范圍.

(Ⅰ)∵橢圓的左焦點(diǎn),∴.

代入,得.

,∴,.

∴橢圓的標(biāo)準(zhǔn)方程為.

(Ⅱ)(i)設(shè)點(diǎn),設(shè)過(guò)點(diǎn)與橢圓相切的直線方程為.

,消去,得.

.

,整理得.

由已知,則.

,∴.

ii)設(shè)點(diǎn).

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為.

,消去,得.

.

,整理得.

.

∴直線的方程為.

化簡(jiǎn),可得,即.

經(jīng)驗(yàn)證,當(dāng)直線的斜率不存在時(shí),直線的方程為,也滿足.

同理,可得直線的方程為.

在直線上,∴,.

∴直線的方程為.

,消去,得.

.

.

又由(i)可知當(dāng)直線,的斜率都存在時(shí),;易知當(dāng)直線斜率不存在時(shí),也有.

為圓的直徑,即.

.

,∴.

的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們打印用的A4紙的長(zhǎng)與寬的比約為,之所以是這個(gè)比值,是因?yàn)榘鸭垙垖?duì)折,得到的新紙的長(zhǎng)與寬之比仍約為,紙張的形狀不變.已知圓柱的母線長(zhǎng)小于底面圓的直徑長(zhǎng)(如圖所示),它的軸截面ABCD為一張A4紙,若點(diǎn)E為上底面圓上弧AB的中點(diǎn),則異面直線DEAB所成的角約為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù),其中e=2.71828…為自然對(duì)數(shù)的底數(shù).

(Ⅰ)證明:函數(shù)上有唯一零點(diǎn);

(Ⅱ)記x0為函數(shù)上的零點(diǎn),證明:

(。;

(ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的離心率為,且過(guò)點(diǎn)A2,1).

1)求C的方程:

2)點(diǎn)M,NC上,且AMAN,ADMN,D為垂足.證明:存在定點(diǎn)Q,使得|DQ|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),證明.

1存在唯一的極小值點(diǎn);

2的極小值點(diǎn)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司采購(gòu)了一批零件,為了檢測(cè)這批零件是否合格,從中隨機(jī)抽測(cè)120個(gè)零件的長(zhǎng)度(單位:分米),按數(shù)據(jù)分成,,,6組,得到如圖所示的頻率分布直方圖,其中長(zhǎng)度大于或等于1.59分米的零件有20個(gè),其長(zhǎng)度分別為1.59,1.591.61,1.611.621.631.63,1.641.65,1.65,1.65,1.65,1.661.671.68,1.691.69,1.71,1.72,1.74,以這120個(gè)零件在各組的長(zhǎng)度的頻率估計(jì)整批零件在各組長(zhǎng)度的概率.

1)求這批零件的長(zhǎng)度大于1.60分米的頻率,并求頻率分布直方圖中,的值;

2)若從這批零件中隨機(jī)選取3個(gè),記為抽取的零件長(zhǎng)度在的個(gè)數(shù),求的分布列和數(shù)學(xué)期望;

3)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布.如果這批零件的長(zhǎng)度(單位:分米)滿足近似于正態(tài)分布的概率分布,則認(rèn)為這批零件是合格的將順利被簽收;否則,公司將拒絕簽收.試問,該批零件能否被簽收?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)R).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn),點(diǎn)在橢圓.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)經(jīng)過(guò)圓上一動(dòng)點(diǎn)作橢圓的兩條切線,切點(diǎn)分別記為,,直線,分別與圓相交于異于點(diǎn),兩點(diǎn).

i)求證:;

ii)求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長(zhǎng)為2的正三角形,頂點(diǎn)上的射影為點(diǎn),且, , .

(1)證明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案