精英家教網 > 高中數學 > 題目詳情

 已知方程的解為,則下列說法正確的是(        )

A.     B.        C.        D.  

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數方程為
x=
3
cos∂
y=sin∂
(∂為參數)

(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
π
2
),判斷點P與直線l的位置關系;
(Ⅱ)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c.
(1)若a>b>c且f(1)=0,判斷函數f(x)的圖象與x軸公共點的個數;
(2)證明:若對x1,x2且x1<x2,f(x1)≠f(x2),則方程f(x)=
f(x1)+f(x2)2
必有一實根在區(qū)間(x1,x2)內;
(3)在(1)的條件下,設f(x)=0的另一根為x0,若方程f(x)+a=0有解證明-2<x0≤-1.

查看答案和解析>>

科目:高中數學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣M=
01
10
,N=
0-1
10

(Ⅰ)求矩陣NN;
(Ⅱ)若點P(0,1)在矩陣M對應的線性變換下得到點P′,求P′的坐標.
(2)選修4-4:坐標系與參數方程
在直角坐標系xOy中,直線l的參數方程是
x=t
y=2t+1
(t為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的極坐標方程是ρ=2cosθ(Ⅰ)在直角坐標系xOy中,求圓C的直角坐標方程
(Ⅱ)求圓心C到直線l的距離.
(3)選修4-5:不等式選講
已知函數f(x)=|x-1|
(Ⅰ)解不等式f(x)>2;
(Ⅱ)求函數y=f(-x)+f(x+5)的最小值.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年福建省泉州市高三畢業(yè)班質量檢查理科數學試卷(解析版) 題型:解答題

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2個小題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.

(1)(本小題滿分7分)選修4—2:矩陣與變換

在平面直角坐標系中,把矩陣確定的壓縮變換與矩陣確定的旋轉變換進行復合,得到復合變換

(Ⅰ)求復合變換的坐標變換公式;

(Ⅱ)求圓在復合變換的作用下所得曲線的方程.

(2)(本小題滿分7分)選修4-4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程為為參數),分別為直線軸、軸的交點,線段的中點為

(Ⅰ)求直線的直角坐標方程;

(Ⅱ)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求點的極坐標和直線的極坐標方程.

(3)(本小題滿分7分)選修4—5:不等式選講

已知不等式的解集與關于的不等式的解集相等.

(Ⅰ)求實數,的值;

(Ⅱ)求函數的最大值,以及取得最大值時的值.

 

查看答案和解析>>

科目:高中數學 來源:遼寧省大連二十四中2009屆高三第五次模擬考試(理) 題型:解答題

 請考生在A、B、C三題中任選一題作答,如果多做,則按所做的第一題記分.

A.

選修4-1:幾何證明選講

如圖,已知是圓的直徑,直線與圓相切于點,直線與弦垂直并相交于點,與弧相交于,連接,

(Ⅰ)求證:;

(Ⅱ)求的長.

 

 

B.

選修4-4:坐標系與參數方程

已知曲線的極坐標方程為,曲線的參數方程為為參數),求相交所得弦的弦長.

 

 

C.

選修4-5:不等式選講

已知函數

(Ⅰ)若的最小值為,求的值;

(Ⅱ)在(Ⅰ)的條件下,求不等式的解集.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案