橢圓=1的焦點為F1和F2,點P在橢圓上,如果線段PF1的中點在y軸上,那么|PF1|是|PF2|的

[  ]

A.7倍
B.5倍
C.4倍
D.3倍
答案:A
解析:

  解:如圖,線段PF1的中點My軸上,

  ∴MO是△PF1F2的中位線,所以|PF2|x軸.

  ∵a212,b23,

  ∴c3.∴F2(30).設(shè)P(3,y),代入橢圓方程可得|y|

  ∴|PF2|,而|PF1||PF2|2a4,

  ∴|PF1|,∴|PF1||PF2|7


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆福建晉江季延中學(xué)高二上學(xué)期期中考試文數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)橢圓=1(a>b>0)的離心率為e=,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)(    )

A.必在圓x2+y2=2內(nèi)      B.必在圓x2+y2=2上

C.必在圓x2+y2=2外      D.以上三種情形都有可能

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省高三預(yù)測卷3數(shù)學(xué) 題型:解答題

(本小題滿分16分)

已知F是橢圓=1的右焦點,點P是橢圓上的動點,點Q是圓上的動點.

(1)試判斷以PF為直徑的圓與圓的位置關(guān)系;

(2)在x軸上能否找到一定點M,使得=e (e為橢圓的離心率)?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓=1的右焦點為F,P是橢圓上一點,點M滿足|M|=1,·=0,則|M|的最小值為

(  )

A.3                                        B.

C.2                                        D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點O和點F分別為橢圓=1的中心和左焦點,點P為橢圓上的任意一點,則·的最大值為(  )

(A)2  (B)3  (C)6  (D)8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓=1(a>b>0)的離心率為e=,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)(  )

(A)必在圓x2+y2=2內(nèi)

(B)必在圓x2+y2=2上

(C)必在圓x2+y2=2外

(D)以上三種情形都有可能

查看答案和解析>>

同步練習(xí)冊答案