【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)求實(shí)數(shù)的值;
(2)用定義法判斷函數(shù)在上的單調(diào)性;
(3)若存在,使得不等式成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)單調(diào)遞增;(3).
【解析】
試題分析:(1)因?yàn)?/span>的圖象關(guān)于原點(diǎn)對(duì)稱且,所以是上的奇函數(shù),由,即可求解實(shí)數(shù)的值;(2)利用函數(shù)單調(diào)性的定義,即可證明函數(shù)為單調(diào)遞增函數(shù);(3)由函數(shù)是奇函數(shù),得,又由為增函數(shù),得, 轉(zhuǎn)化為“存在,使得不等式成立.” 即可求解實(shí)數(shù)的取值范圍.
試題解析:(1)因?yàn)?/span>的圖象關(guān)于原點(diǎn)對(duì)稱且,
所以是上的奇函數(shù),由,得,解得.
經(jīng)檢驗(yàn),當(dāng)時(shí),是奇函數(shù),故.
(2)任取,則, 所以,
所以
,所以,故函數(shù)在上單調(diào)遞增.
(3)由,可得.
又因?yàn)?/span>是奇函數(shù),所以.
又因?yàn)?/span>在上單調(diào)遞增,所以, 即,
所以“存在,使得不等式成立.”
即“存在,使得不等式成立.”
令, 則, 所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)在圓上運(yùn)動(dòng),軸,為垂足,點(diǎn)在線段上,滿足.
(1)求點(diǎn)的軌跡方程;
(2)過(guò)點(diǎn)作直線與點(diǎn)的軌跡相交于兩點(diǎn),使點(diǎn)為弦的中點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,半徑為2的圓與相切,圓心在軸上且在直線的右上方.
(1)求圓的方程;
(2)若直線過(guò)點(diǎn)且與圓交于兩點(diǎn)(在軸上方,在軸下方),問(wèn)在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)年級(jí)有16個(gè)班級(jí),每個(gè)班級(jí)學(xué)生從1到50號(hào)編排,為了交流學(xué)習(xí)經(jīng)驗(yàn),要求每班編號(hào)為14的同學(xué)留下進(jìn)行交流,這里運(yùn)用的是 ( )
A. 分層抽樣 B. 抽簽法 C. 系統(tǒng)抽樣 D. 隨機(jī)數(shù)表法
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是定義域?yàn)?/span>R的奇函數(shù).
(1)求的值;
(2)若,試判斷的單調(diào)性(不需證明),并求使不等式恒成立的t的取值范圍;
(3)若,,求在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與軸非負(fù)半軸重合,直線的參數(shù)方程為:為參數(shù)),曲線的極坐標(biāo)方程為:.
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若用斜二測(cè)畫(huà)法把一個(gè)高為10 cm的圓柱的底面畫(huà)在x′O′y′平面上,則該圓柱的高應(yīng)畫(huà)成( )
A. 平行于z′軸且長(zhǎng)度為10 cm
B. 平行于z′軸且長(zhǎng)度為5 cm
C. 與z′軸成45°且長(zhǎng)度為10 cm
D. 與z′軸成45°且長(zhǎng)度為5 cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(且).
(1)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍;
(2)是否存在這樣的實(shí)數(shù),使得函數(shù)在區(qū)間上為減函數(shù),并且最大值為1?如果存在,試求出的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答下列各題:
(1)在△ABC中,已知C=45°,A=60°,b=2,求此三角形最小邊的長(zhǎng)及a與B的值;
(2)在△ABC中,已知A=30°,B=120°,b=5,求C及a與c的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com