(本小題滿分14分)

如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點, 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

(1)求證:P-ABC為正四面體;

(2)棱PA上是否存在一點M,使得BM與面ABC所成的角為45°?若存在,求出點M的位置;若不存在,請說明理由。

(3)設棱臺DEF-ABC的體積為V=, 是否存在體積為V且各棱長均相等的平行六面體,使得它與棱臺DEF-ABC有相同的棱長和,并且該平行六面體的一條側棱與底面兩條棱所成的角均為60°? 若存在,請具體構造出這樣的一個平行六面體,并給出證明;若不存在,請說明理由.

 

【答案】

(1)見解析  (2)M點 滿足AM=    

(3)構造棱長均為,底面為正方形或銳角為60°的菱形的平行六面體

【解析】

試題分析: 

(1)解:∵棱臺DEF-ABC與棱錐P-ABC的棱長和相等

   ∴DE+EF+FD=PD+OE+PF.                 2分

   又∵截面DEF∥底面ABC,

∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°

∴P-ABC是正四面體.                  4分

(2)(5分)

作PO⊥面ABC于O,MN⊥面ABC于N,

∵A、M、P三點共線       ∴A、N、O三點共線,延長AO交BC于G

∴∠MBN=45°,MN//PO

∵P-ABC為棱長為1的正四面體

∴ AO=,PO=             6分    

設MN=x,則BN=x,且

∴AM=,AN=

∵AG是等邊△ABC的中線              ∴∠BAN=30°

∴BN2=AN2+AB2-2ABANcos30°                            8分

解得x=

∴AM=                                   9分

(3)(5分)

存在滿足條件的平行六面體.                                 10分

棱臺DEF-ABC的棱長和為定值6,則平行六面體的棱長均為,      11分

設該六面體一條側棱長為A1B1,與底面兩條棱A1C1和A1D1的夾角為60°,設底面四邊形的銳角為2α, 作B1E1⊥底面A1C1D1于E1,E1F1⊥A1C1

∵∠B1A1C1=∠B1A1D1

∴∠C1A1E1=α 

則A1F1=,A1E1=,zxxk

B1E1=

則V=

解得    

∴2α=90°或60°                    13分

故構造棱長均為,底面為正方形或銳角為60°的菱形的平行六面體即滿足要求.  14分

考點:棱柱 棱臺的性質,直線與平面所成角,解三角形,柱體體積公式

點評:該題綜合性較強,涉及多知識點的交匯

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設AB是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案