15.已知m∈R,函數(shù)f(x)=x3-mx在[1,+∞)上是單調(diào)增函數(shù),則m的最大值是3.

分析 法一:先利用導(dǎo)函數(shù)求出原函數(shù)的單調(diào)增區(qū)間,再讓[1,+∞)是所求區(qū)間的子集可得結(jié)論.
法二:由題意m>0,函數(shù)f(x)=x3-mx,首先求出函數(shù)的導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系進行判斷.

解答 解:法一∵f(x)=x3-mx,∴f′(x)=3x2-m=3(x-$\sqrt{\frac{m}{3}}$)(x+$\sqrt{\frac{m}{3}}$)
∴f(x)=x3-mx在(-∞,-$\sqrt{\frac{m}{3}}$),($\sqrt{\frac{m}{3}}$,+∞)上單調(diào)遞增,
∵函數(shù)f(x)=x3-mx在[1,+∞)上單調(diào)遞增,
∴$\sqrt{\frac{m}{3}}$≤1⇒m≤3,
∴m的最大值為 3;
法二:由法一得f′(x)=3x2-m,
∵函數(shù)f(x)=x3-mx在[1,+∞)上是單調(diào)增函數(shù),
∴在[1,+∞)上,f′(x)≥0恒成立,
即m≤3x2在[1,+∞)上恒成立,
∴m≤3,
故答案為:3.

點評 本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系、不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x2+ex(x<0)與g(x)=x2+ln(x+a)的圖象上存在關(guān)于y軸對稱的點,則a的取值范圍是( 。
A.$(-∞,\sqrt{e})$B.(-e,e)C.$(-\frac{1}{e},\sqrt{e})$D.(-∞,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過橢圓3x2+4y2=48的左焦點F引直線交橢圓于A、B兩點,若|AB|=7,則此直線的方程為$\sqrt{3}$x+2y+2$\sqrt{3}$=0或$\sqrt{3}$x-2y+2$\sqrt{3}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.sin480°的值為(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線$\sqrt{3}$x+y-$\sqrt{3}$=0經(jīng)過橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點和上頂點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(0,-2)的直線l與橢圓C交于不同的A,B兩點,若∠AOB為鈍角,求直線l斜率k的取值范圍;
(3)過橢圓C上異于其頂點的任一點P作圓O:x2+y2=2的兩條切線,切點分別為M,N(M,N不在坐標(biāo)軸上),若直線MN在x軸,y軸上截距分別為m,n,證明:$\frac{1}{4{m}^{2}}+\frac{1}{3{n}^{2}}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在正方體ABCD-A1B1C1D1中,底面邊長為2$\sqrt{2}$,BD與AC交于點O,
(1)求直線D1O與平面ABCD所成角.
(2)求點D到ACD1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.棱長為1的正方體ABCD-A1B1C1D1中,E、F分別為棱BC、DD1的中點.
(1)若平面AFB1與平面BCC1B1的交線為l,l與底面AC的交點為點G,試求AG的長;
(2)求二面角A-FB1-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.矩陣A=$[{\begin{array}{l}1&4\\ 2&3\end{array}}]$的特征多項式為λ2-4λ-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知:函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x+a(a∈R,a為常數(shù))
(1)若x∈R,求f(x)的最小正周期、單調(diào)遞增區(qū)間;
(2)若x∈R,求f(x)的對稱軸方程和對稱中心坐標(biāo);
(3)若f(x)在[-$\frac{π}{6}$,$\frac{π}{4}$]上最大值與最小值之和為3,求a的值.

查看答案和解析>>

同步練習(xí)冊答案