(本小題滿分10分)選修4-5:不等式選講
(Ⅰ)已知都是正實數(shù),求證:;
(Ⅱ)已知都是正實數(shù),求證:.                          
見解析
(Ⅰ)∵
,
又∵,∴,∴,
.………………………5分
法二:∵,又∵,∴,
,展開得,
移項,整理得.………………………5分
(Ⅱ) ∵,由(Ⅰ)知:
;;
將上述三式相加得:,

.………………………10分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知0<a<1,0<b<1,0<c<1。求證:(1-a)b,(1-b)c,(1-c)a中至少有一個不大于

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知x,y均為正數(shù),且xy,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

a>0,b>0,a3+b3=2,求證:a+b≤2,ab≤1。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列推理中屬于歸納推理且結論正確的是(  )
A.設數(shù)列﹛an﹜的前n項和為sn,由an=2n﹣1,求出s1 =12 , s2=22,s3=32,…推斷sn=n2
B.由cosx,滿足x∈R都成立,推斷為奇函數(shù)。
C.由圓的面積推斷:橢圓(a>b>0)的面積s=πab
D.由(1+1)2>21,(2+1)2>22,(3+1)2 >23,…,推斷對一切正整數(shù)n,(n+1)2>2n

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

要證明可選擇的方法有以下幾種,其中最合理的是  (   )
A.綜合法B.分析法C.歸納法D.類比法

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用反證法證明命題“三角形的三個內(nèi)角中至多有一個是鈍角”時, 假設正確的是(    )
A.假設三角形的內(nèi)角三個內(nèi)角中沒有一個是鈍角
B.假設三角形的內(nèi)角三個內(nèi)角中至少有一個是鈍角
C.假設三角形的內(nèi)角三個內(nèi)角中至多有兩個是鈍角
D.假設三角形的內(nèi)角三個內(nèi)角中至少有兩個是鈍角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

  (12分) 設,且,,試證:。

查看答案和解析>>

同步練習冊答案