已知直線l:x-y+4=0與圓C:,則C上各點到l的距離的最小值為    
【答案】分析:先再利用圓的參數(shù)方程設(shè)出點C的坐標(biāo),再利用點到直線的距離公式表示出距離,最后利用三角函數(shù)的有界性求出距離的最小值即可.
解答:解:,
∴距離最小值為
故答案為:
點評:本小題主要考查圓的參數(shù)方程、點到直線的距離公式、三角函數(shù)的和角公式及及三角函數(shù)的性質(zhì)等基礎(chǔ)知識,考查運算求解能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-y+4=0與圓C:(x-1)2+(y-1)2=2,則C上各點到l的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-y+4=0與圓C:
x=1+2cosθ
y=1+2sinθ
,則C上各點到l的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知直線l:x+y=m經(jīng)過原點,則直線l被圓x2+y2-2y=0截得的弦長是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-y+4=0與圓C:x2+y2-2x-2y=0,則圓C上各點到l的距離的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河北區(qū)一模)已知橢圓C的方程為 
x2
a2
+
y2
b2
=1 
(a>b>0),過其左焦點F1(-1,0)斜率為1的直線交橢圓于P、Q兩點.
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共線,求橢圓C的方程;
(Ⅱ)已知直線l:x+y-
1
2
=0,在l上求一點M,使以橢圓的焦點為焦點且過M點的雙曲線E的實軸最長,求點M的坐標(biāo)和此雙曲線E的方程.

查看答案和解析>>

同步練習(xí)冊答案