若函數(shù)f(x)=
1
3
x3-x在(a,10-a2)上有最小值,則a的取值范圍為
 
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:由題意求導(dǎo)f′(x)=x2-1=(x-1)(x+1);從而得到函數(shù)的單調(diào)性,從而可得-2≤a<1<10-a2;從而解得.
解答: 解:∵f(x)=
1
3
x3-x,
∴f′(x)=x2-1=(x-1)(x+1);
故f(x)=
1
3
x3-x在(-∞,-1)上是增函數(shù),
在(-1,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
f(x)=
1
3
x3-x=f(1)=-
2
3

故x=1或x=-2;
故-2≤a<1<10-a2;
解得,-2≤a<1
故答案為:[-2,1).
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的綜合應(yīng)用,同時(shí)考查了函數(shù)的最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+a
x+b
(a、b為常數(shù)).
(1)若a=2,b=1,解不等式f(x-1)>0;
(2)當(dāng)x∈[-1,2]時(shí),f (x)的值域?yàn)閇
5
4
,2],求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m>0,命題p:
x2
16+m
+
y2
16
=1的離心率e≤
3
5
,命題q:x2-mx+4=0有實(shí)數(shù)根,且¬p∨q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=4x的焦點(diǎn)坐標(biāo)為(  )
A、(2,0)
B、(1,0)
C、(0,-4)
D、(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanθ=2,求
sinθ-cosθ
2sinθ+3cosθ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=4sin(-2x+
π
6
)-1,且lgf(x)>0,則f(x)單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若斜率為-2的直線l經(jīng)過(guò)點(diǎn)(0,8),則直線l與兩坐標(biāo)軸圍成的三角形面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校有教師150人,后勤工作人員20人,高中生1200人,初中生1800人,現(xiàn)要了解該校全體人員對(duì)學(xué)校的某項(xiàng)規(guī)定的看法,抽取一個(gè)容量為317的樣本進(jìn)行調(diào)查.設(shè)計(jì)一個(gè)合適的抽樣方案.你會(huì)在初中生中抽。ā 。┤耍
A、120B、180
C、200D、317

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓左焦點(diǎn)F且傾斜角為60°的直線與橢圓交于A、B兩點(diǎn),若
AF
=
3
2
FB
,則橢圓的離心率等于(  )
A、
2
5
B、
2
3
C、
1
2
D、
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案