給出下列四個命題:
①若對于?x∈R,有f(x-1)=f(x+1),則函數(shù)f(x)的圖象關于直線x=1對稱;
②若函數(shù)f(x)是奇函數(shù),則函數(shù)f(x-1)的圖象關于點(1,0)對稱;
③若f(x+1)+f(1-x)=0恒成立,則函數(shù)y=f(x)的圖象關于點(1,0)對稱;
④函數(shù)y=f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關于y軸對稱
其中正確的命題是( )
A.①②
B.②③
C.②④
D.①③④
【答案】分析:若f(x-1)=f(x+1),則f(x)=f(x+2),根據(jù)函數(shù)周期性的定義,可判斷①的真假;
根據(jù)奇函數(shù)圖象的對稱性及函數(shù)圖象平移變換法則,可判斷②的真假;
若f(x+1)+f(1-x)=0恒成立,則f(x)=-f(2-x),根據(jù)函數(shù)圖象的對稱性,可判斷③的真假;
根據(jù)函數(shù)圖象的對稱變換法則,可判斷④的真假.
解答:解:若對于?x∈R,有f(x-1)=f(x+1),則f(x)=f(x+2),則函數(shù)f(x)是以2為周期的周期函數(shù),故①錯誤;
若函數(shù)f(x)是奇函數(shù),其圖象關于原點對稱,函數(shù)f(x-1)的圖象,是把函數(shù)f(x)的圖象向右平移一個單位,他關于(1,0)對稱,故②正確;
若f(x+1)+f(1-x)=0恒成立,則f(x)=-f(2-x),則函數(shù)y=f(x)的圖象關于點(1,0)對稱,故③正確;
函數(shù)y=f(x-1)的圖象與y=f(-x-1)的圖象關于y軸對稱,故④錯誤
故選B
點評:本題以命題的真假判斷與應用為載體考查了函數(shù)的周期性,奇偶性,對稱性及對稱變換,是函數(shù)圖象和性質(zhì)的綜合應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點E,F(xiàn)分別為AC,BD的中點,給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為(  )
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是( 。

查看答案和解析>>

同步練習冊答案