精英家教網 > 高中數學 > 題目詳情

數列{數學公式}的前n項和為Sn,則數學公式Sn=________.


分析:根據題意將該數列的通項公式拆成兩項差,進而求出前n項和,再求極限.
解答:∵
∴Sn=a1+a2+…+an
=
=

故答案為:
點評:本題求和利用裂項相消法,將通項公式拆成兩項相減,在求前n項和時除了首尾各一項或少數幾項外,其余項都能前后相消,進而求出sn
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知各項均為正數的數列{an}的前n項和為Sn,函數f(x)=
1
2
px2
一(p+q)x+qlnx(其中p,q均為常數,且p>q>0),當x=a1時,函數f(x)取得極小值,點(an,2Sn)(n∈N*)均在函數y=2px2-
q
x
+f'(x)+q的圖象上.(其中f'(x)是函數f(x)的導函數)
(1)求a1的值;
(2)求數列{an}的通項公式;
(3)記bn=
4Sn
n+3
qn
,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}的公差大于0,且a2,a5是方程x2-12x+27=0的兩根,數列{bn}的前n項和為Sn,且Sn=
1-bn2
(n∈N*).
(1)求數列{an},{bn}的通項公式;
(2)若cn=an•bn,設數列{cn}的前n項和為Tn,證明:Tn<1.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•營口二模)設數列{an}的前n項和為Sn,如果對于任意的n∈N+ ,點Pn(n,Sn)都在函數f(x)=2x2-x的圖象上,且過點Pn(n,Sn)的切線斜率為kn,
(1)求數列{an}的通項公式;
(2)若bn=an+kn,求數列{bn}的前前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}的前n項和為Sn,且a1=2,an+1=an+3對任意的n∈N+恒成立.
(1)求數列{an}的通項公式;
(2)在平面直角坐標系中,向量
a
=(2,S5),向量
b
=(4k,-S3)若
a
b
,求k值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足an+1=2an-1且a1=3,bn=
an-1anan+1
,數列{bn}的前n項和為Sn
(1)求證數列{an-1}是等比數列;
(2)求{an}的通項公式;
(3)求數列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案