14.設(shè)集合 A={x|x=$\frac{k}{4}$+$\frac{1}{2}$,k∈Z},B={x|x=$\frac{k}{2}$+$\frac{1}{4}$,k∈Z},則集合 A 與 B 的關(guān)系是( 。
A.A?BB.B?A
C.A=BD.A 與 B 關(guān)系不確定

分析 將集合A、B中的表達(dá)式分別提取$\frac{1}{4}$,再分析得到式子的形式,不難得到B是A的真子集.

解答 解:對(duì)于B,x=$\frac{k}{2}$+$\frac{1}{4}$=$\frac{1}{4}$(2k+1),因?yàn)閗是整數(shù),所以集合A表示的數(shù)是$\frac{1}{4}$的奇數(shù)倍;
對(duì)于A,x=$\frac{k}{4}$+$\frac{1}{2}$=$\frac{1}{4}$(k+2),因?yàn)閗+2是整數(shù),所以集合B表示的數(shù)是$\frac{1}{4}$的整數(shù)倍.
因此,集合B的元素必定是集合A的元素,集合A的元素不一定是集合B的元素,即B?A.
故選B.

點(diǎn)評(píng) 本題以兩個(gè)數(shù)集為例,叫我們尋找兩個(gè)集合的包含關(guān)系,著重考查了集合的定義與表示和集合包含關(guān)系等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某班一次數(shù)學(xué)考試成績頻率分布直方圖如圖所示,數(shù)據(jù)分組依次為[70,90),[90,110),[110,130),[130,150],已知成績大于等于90分的人數(shù)為36人,現(xiàn)采用分層抽樣的方式抽取一個(gè)容量為10的樣本.
(1)求每個(gè)分組所抽取的學(xué)生人數(shù);
(2)從數(shù)學(xué)成績?cè)赱110,150]的樣本中任取2人,求恰有1人成績?cè)赱110,130)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.化簡:
(1)($\frac{2}{3}$)-2+(1-$\sqrt{2}$)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+$\sqrt{(3-π)^{2}}$;
(2)$\frac{5}{6}$a${\;}^{\frac{1}{3}}$b-2•(-3a${\;}^{-\frac{1}{2}}$b-1)÷(4a${\;}^{\frac{2}{3}}$b-3)${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,已知圓內(nèi)接四邊形ABCD,記T=tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+tan$\frac{D}{2}$.
(1)求證:T=$\frac{2}{sinA}$+$\frac{2}{sinB}$;
(2)若AB=6,BC=3,CD=4,AD=5,求T的值及四邊形ABCD的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax-$\frac{1}{x^2}$,且f(-$\frac{1}{3}$)=4f($\frac{1}{2}$).
(1)用定義法證明:函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增;
(2)若存在x∈[1,3],使得f(x)<|x-2|+m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題中,真命題的是( 。
A.存在x∈[0,$\frac{π}{2}$],sinx+cosx≥2B.任意x∈(3,+∞),x2>3x-1
C.存在x∈R,x2+x=-1D.任意x∈($\frac{π}{2}$,π),tanx>sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,b=asinB,則△ABC一定是( 。
A.鈍角三角形B.銳角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知四棱錐P-ABCD中,底面ABCD為平行四邊形,點(diǎn)M,N,Q分別是PA,BD,PD的中點(diǎn)上,
(1)求證:MN∥PC;
(2)求證:平面MNQ∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C1:ρ=-2cosθ,曲線C2:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}}$(θ為參數(shù)).
(1)化圓C1和曲線C2的方程為普通方程;
(2)過圓C1的圓心C1且傾斜角為$\frac{π}{3}$的直線l交曲線C2于A,B兩點(diǎn),求圓心C1到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

同步練習(xí)冊(cè)答案