設(shè)A、B、C、D是球面上的四個點,且在同一平面內(nèi),AB=BC=CD=DA=3,球心到該平面的距離是球半徑的一半,則球的體積是(  )

A.    B.         C.         D.

A


解析:

A、BC、D均為球面上的點,且在同一平面上,且AB=BC=CD=DA=3,

ABCD為圓內(nèi)接正方形.?

∴該圓直徑為.∴半徑為.

.∴.?

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)A、B、C、D是球面上的四個點,且在同一平面內(nèi),AB=BC=CD=DA=3,球心到該平面的距離是球半徑的一半,則球的體積是(  )
A、8
6
π
B、64
6
π
C、24
2
π
D、72
2
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)A、B、C、D是球面上的四個點,且在同一平面內(nèi),AB=BC=CD=DA=3,球心到該平面的距離是球半徑的一半,則球的體積是(    )

A.π               B.π             C.π            D.π

查看答案和解析>>

科目:高中數(shù)學 來源:遼寧 題型:單選題

設(shè)A、B、C、D是球面上的四個點,且在同一平面內(nèi),AB=BC=CD=DA=3,球心到該平面的距離是球半徑的一半,則球的體積是(  )
A.8
6
π
B.64
6
π
C.24
2
π
D.72
2
π

查看答案和解析>>

科目:高中數(shù)學 來源:2004年遼寧省高考數(shù)學試卷(解析版) 題型:選擇題

設(shè)A、B、C、D是球面上的四個點,且在同一平面內(nèi),AB=BC=CD=DA=3,球心到該平面的距離是球半徑的一半,則球的體積是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案