某單位要在甲、乙、丙、丁4人中安排2人分別擔(dān)任周六、周日的值班任務(wù)(每人被安排是等可能的,每天只安排一人).其中甲、乙兩人都被安排的概率是
1
6
1
6
分析:先計算或列舉所有的不同安排方法數(shù),再列舉甲乙兩人都被安排的安排方法數(shù),最后利用古典概型概率計算公式計算所求概率即可
解答:解:安排情況如下:
甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丙丁,丁甲,丁乙,丁丙
∴共有
A
2
4
=12種等可能的安排方法.
甲、乙兩人都被安排的情況包括:“甲乙”,“乙甲”兩種,
∴甲、乙兩人都被安排(記為事件A)的概率:P(A)=
2
12
=
1
6

故答案為
1
6
點評:本題考查了古典概型概率計算方法,利用排列計數(shù)或列舉計數(shù)的方法
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某單位要在甲、乙、丙、丁4人中安排2人分別擔(dān)任周六、周日的值班任務(wù)(每人被安排是等可能的,每天只安排一人).
(Ⅰ)寫出所有的基本事件;
(Ⅱ)求甲、乙兩人中至少有一人被安排的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳一模)某單位要在甲、乙、丙、丁4人中安排2人分別擔(dān)任周六、周日的值班任務(wù)(每人被安排是等可能的,每天只安排一人).
(Ⅰ)共有多少種安排方法?
(Ⅱ)其中甲、乙兩人都被安排的概率是多少?
(Ⅲ)甲、乙兩人中至少有一人被安排的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位要在甲、乙、丙、丁人中安排人分別擔(dān)任周六、周日的值班任務(wù)(每人被安排是等可能的,每天只安排一人).其中甲、乙兩人都被安排的概率是__ _ ____ _ ___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省實驗學(xué)校高二下期中理科數(shù)學(xué)試卷A(解析版) 題型:解答題

某單位要在甲、乙、丙、丁4人中安排2人分別擔(dān)任周六、周日的值班任務(wù)(每人被安排是等可能的,每天只安排一人).

(1)共有多少種安排方法?

(2)其中甲、乙兩人都被安排的概率是多少?

(3)甲、乙兩人中至少有一人被安排的概率是多少?

 

查看答案和解析>>

同步練習(xí)冊答案