【題目】已知直線l與橢圓 交于兩點(diǎn)A(x1 , y1),B(x2 , y2),橢圓上的點(diǎn)到下焦點(diǎn)距離的最大值、最小值分別為 ,向量 =(ax1 , by1), =(ax2 , by2),且 ,O為坐標(biāo)原點(diǎn). (Ⅰ)求橢圓的方程;
(Ⅱ)判斷△AOB的面積是否為定值,如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.

【答案】解:(Ⅰ)由題意可知 ,∴ ,∴b2=a2﹣c2=1 ∴橢圓的方程為 ;
(Ⅱ)△AOB的面積為定值1.
,∴a2x1x2+b2y1y2=0,∴4x1x2+y1y2=0
① 若直線l斜率不存在,設(shè)直線l的方程為x=p,則x1=x2=p,y1=﹣y2
∵4x1x2+y1y2=0,∴
,∴
∴SAOB= =1;
②若直線l斜率存在,設(shè)直線l的方程為y=kx+r,代入橢圓方程,可得(4+k2)x2+2krx+r2﹣4=0
∴x1+x2=﹣ ,x1x2=
∵4x1x2+y1y2=0
∴(4+k2)x1x2+kr(x1+x2)+r2=0
∴r2﹣4﹣ +r2=0
∴2r2=4+k2 , ∴r2≥2
∴△=16(k2﹣r2+4)>0
設(shè)原點(diǎn)O到直線l的距離為d,則SAOB= d|AB|= × =
綜上可知,△AOB的面積為定值1.
【解析】(Ⅰ)利用橢圓上的點(diǎn)到下焦點(diǎn)距離的最大值、最小值分別為 ,確定橢圓的幾何量,即可求得橢圓的方程;(Ⅱ)先利用向量知識(shí),可得4x1x2+y1y2=0,再分類討論,求出面積,即可求得結(jié)論.
【考點(diǎn)精析】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】建造一個(gè)容積為240m3 , 深為5m的長(zhǎng)方體無蓋蓄水池,池壁的造價(jià)為180元/m2 , 池底的造價(jià)為350元/m2 , 如何設(shè)計(jì)水池的長(zhǎng)與寬,才能使水池的總造價(jià)為42000元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形ABC的頂點(diǎn)坐標(biāo)A(﹣2,0),直角頂點(diǎn) ,頂點(diǎn)C在x軸上,點(diǎn)P為線段OA的中點(diǎn). (Ⅰ)求BC邊所在直線方程;
(Ⅱ)圓M是△ABC的外接圓,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2﹣2ax+1,a∈R;
(1)若函數(shù)f(x)在區(qū)間(﹣1,2)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若不等式f(x)>0對(duì)任x∈R上恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)的最小值為﹣2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線與x軸的交點(diǎn)為Q,過Q點(diǎn)的直線l交拋物線于A,B兩點(diǎn).
(1)若直線l的斜率為 ,求證: ;
(2)設(shè)直線FA,F(xiàn)B的斜率分別為k1 , k2 , 求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=( 的單調(diào)遞減區(qū)間為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ;
(1)證明f(x)為奇函數(shù);
(2)證明f(x)在區(qū)間(0,2)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1 , 以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2 , 若對(duì)任意x∈(0,1)不等式t<e1+e2恒成立,則t的最大值為(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 首項(xiàng)為a1且1,an , Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=(log2a2n+1)×(log2a2n+3),求數(shù)列 的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案