某同學對函數(shù)f(x)=xcosx進行研究后,得出以下五個結論:
①函數(shù)y=f(x)的圖象是中心對稱圖形;
②對任意實數(shù)x,f(x)≤|x|均成立;
③函數(shù)y=f(x)的圖象與x軸有無窮多個公共點,且任意相鄰兩點的距離相等;
④函數(shù)y=f(x)的圖象與直線y=x有無窮多個公共點,且任意相鄰兩點的距離相等;
⑤當常數(shù)k滿足|k|>1時,函數(shù)y=f(x)的圖象與直線y=kx有且僅有一個公共點.其中所有正確結論的序號是
①②④⑤
①②④⑤
分析:根據(jù)函數(shù)f(x)=xcosx是奇函數(shù)可得①正確.根據(jù)|cosx|≤1,可得②正確.根據(jù)當x=kπ,k∈z 時,函數(shù)f(x)
=xcosx=0,可得③正確.根據(jù)當 x=2kπ,k∈z 時,方程xcosx=x 成立,可得④正確.
根據(jù)方程 xcosx=kx,|k|>1,有唯一解為 x=0,可得⑤正確.
解答:解:由于函數(shù)f(x)=xcosx是奇函數(shù),故圖象關于原點對稱,故①正確.
由于|cosx|≤1,故|f(x)|≤|x|,∴f(x)≤|x|成立,故②正確.
由于當x=kπ,k∈z 時,函數(shù)f(x)=xcosx=0,故函數(shù)y=f(x)的圖象與x軸有無窮多個公共點,
且任意相鄰兩點的距離相等,故③正確.
由于方程xcosx=x 即cosx=1,故  x=2kπ,k∈z,函數(shù)y=f(x)的圖象與直線y=x有無窮多個公共點,
且任意相鄰兩點的距離相等,且等于2π,故④正確.
由方程 xcosx=kx,|k|>1,可得此方程有唯一解為 x=0,故函數(shù)y=f(x)的圖象與直線y=kx
有且僅有一個公共點,故⑤正確.
故答案為:①②④⑤.
點評:本題考查余弦函數(shù)的圖象性質,體現(xiàn)了轉化的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某同學對函數(shù)f(x)=xsinx進行研究后,得出以下結論:
①函數(shù)y=f(x)的圖象是軸對稱圖形;
②對任意實數(shù)x,|f(x)|≤|x|均成立;
③函數(shù)y=f(x)的圖象與直線y=x有無窮多個公共點,且任意相鄰兩點的距離相等;
④當常數(shù)k滿足|k|>1時,函數(shù)y=f(x)的圖象與直線y=kx有且僅有一個公共點.
其中所有正確結論的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學對函數(shù)f(x)=xcosx進行研究后,得出以下結論:
①函數(shù)y=f(x)的圖象是中心對稱圖形;
②對任意實數(shù)x,|f(x)|≤|x|恒成立;
③函數(shù)y=f(x)的圖象與直線y=x有無窮多個公共點,且任意相鄰兩點的距離相等;
④函數(shù)y=f(x)的圖象與x軸有無窮多個公共點,且任意相鄰兩點的距離相等;
⑤當常數(shù)k滿足|k|>1時,函數(shù)y=f(x)圖象與直線y=kx有且只有一個公共點.
正確的命題的序號有
①②③⑤
①②③⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)一模)某同學對函數(shù)f(x)=xcosx進行研究后,得出以下五個結論:
①函數(shù)y=f(x)的圖象是軸對稱圖形;
②對任意實數(shù)x,f(x)≤|x|恒成立;
③函數(shù)y=f(x)的圖象與x軸有無窮多個公共點,且任意相鄰兩點的距離相等;
④函數(shù)y=f(x)的圖象與直線y=x有無窮多個公共點,且任意相鄰兩點的距離相等;
⑤當常數(shù)k滿足|k|>1|時,函數(shù)y=f(x)的圖象與直線y=kx有且僅有一個公共點.
其中正確的結論序號是
②④⑤
②④⑤
(請寫出所有正確結論序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•蚌埠模擬)某同學對函數(shù)f(x)=xcosx進行研究后,得出以下四個結論:
①函數(shù)y=f(x)的圖象是中心對稱圖形;
②對任意實數(shù)x,|f(x)|≤|x|均成立;
③函數(shù)y=f(x)的圖象與x軸有無窮多個公共點,且任意相鄰兩公共點間的距離相等;
④函數(shù)y=f(x)的圖象與直線y=x有無窮多個公共點,且任意相鄰兩公共點間的距離相等;
其中所有正確結論的序號是
①②④
①②④

查看答案和解析>>

同步練習冊答案