設(shè)定義在R上的奇函數(shù)f(x)滿足f(x+π)=f(x),當(dāng)x∈[0,
π
2
)
時(shí),f(x)=sinx,則f(
11π
6
)
=
-
1
2
-
1
2
分析:由定義在R上的奇函數(shù)f(x)滿足f(x+π)=f(x),當(dāng)x∈[0,
π
2
)
時(shí),f(x)=sinx,知f(
11π
6
)=f(
6
)=sin
6
,再由誘導(dǎo)公式能夠求出結(jié)果.
解答:解:∵定義在R上的奇函數(shù)f(x)滿足f(x+π)=f(x),
當(dāng)x∈[0,
π
2
)
時(shí),f(x)=sinx,
∴f(
11π
6
)=f(
6

=f(-
π
6

=-f(
π
6

=-sin
π
6

=-
1
2

故答案為:-
1
2
點(diǎn)評:本題考查三角函數(shù)的周期性的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意三角函數(shù)誘導(dǎo)公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的奇函數(shù)f(x)滿足f(x+3)=-f(1-x),若f(3)=2,則f(2013)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),求f(-
252
)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的奇函數(shù)f(x)=ax3+bx2+cx+d,a,b,c,d∈R.當(dāng)x=-1時(shí),f(x)取得極大值
2
3

(1)求函數(shù)y=f(x)的表達(dá)式;
(2)判斷函數(shù)y=f(x)的圖象上是否存在兩點(diǎn),使得以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切
點(diǎn)的橫坐標(biāo)在區(qū)間[-
2
,
2
]上,并說明理由;
(3)設(shè)xn=1-2-n,ym=
2
(3-m-1)(m,n∈N*),求證:|f(xn)-f(ym)|<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的奇函數(shù)f(x)滿足:對每一個(gè)定義在R上的x都有f(x+1)+f(x)=0,則f(5)=
0
0

查看答案和解析>>

同步練習(xí)冊答案