已知,是否存在不小于2的正整數(shù),使得對(duì)于任意的正整數(shù)都能被整除?如果存在,求出最大的值;如果不存在,請(qǐng)說(shuō)明理由.

,證明見(jiàn)解析


解析:

,

,,由此猜想

下面用數(shù)學(xué)歸納法證明.

(1)當(dāng)時(shí),顯然能被36整除.

(2)假設(shè)當(dāng)時(shí),能被36整除,即能被36整除.

那么當(dāng)時(shí),

,

由假設(shè)知能被36整除,

是偶數(shù),也能被36整除.

根據(jù)(1)(2)可知命題對(duì)任何都成立.

的最大值為36.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(n)=(2n+7)•3n+9,
(1)求f(1)f(2)f(3)的值:
(2)是否存在不小于2的正整數(shù)m,使得對(duì)于任意的正整數(shù)n,f(n)都能被m整除?如果存在,求出最大的m值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(n)=(2n+7)•3n+9,
(1)求f(1)f(2)f(3)的值:
(2)是否存在不小于2的正整數(shù)m,使得對(duì)于任意的正整數(shù)n,f(n)都能被m整除?如果存在,求出最大的m值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(n)=(2n+7)•3n+9,
(1)求f(1)f(2)f(3)的值:
(2)是否存在不小于2的正整數(shù)m,使得對(duì)于任意的正整數(shù)n,f(n)都能被m整除?如果存在,求出最大的m值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省潮州市金山中學(xué)高二(下)4月模塊數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知f(n)=(2n+7)•3n+9,
(1)求f(1)f(2)f(3)的值:
(2)是否存在不小于2的正整數(shù)m,使得對(duì)于任意的正整數(shù)n,f(n)都能被m整除?如果存在,求出最大的m值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案