(本小題滿分12分)已知⊙C:x2+y2-2x-2y+1=0,直線l與⊙C相切且分別交x軸、y軸正向于A、B兩點,O為坐標原點,且=a,=b(a>2,b>2).
(Ⅰ)求線段AB中點的軌跡方程.
(Ⅱ)求△ABC面積的極小值.

解:C:(x-1)2+(y-1)2=1,A(a,O),B(O,b) .設直線AB的方程為
bx+ay-ab=0,∵直線AB與⊙C相切,
①…………………………………2分
(Ⅰ)設AB中點P(x,y),則代入①得P點的軌跡方程:2xy
-2x-2y+1=0,∵a>2,∴x>1.
∴P點的軌跡方程為(x-1)(y-1)= (x>1).…………………………………7分
(Ⅱ)由①得,當且僅當
時等號成立.
SAOBab≥3+2.………………………………12分

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分15分)
設有半徑為3的圓形村落,、兩人同時從村落中心出發(fā)。一直向北直行;先向東直行,出村后一段時間,改變前進方向,沿著與村落邊界相切的直線朝所在的方向前進。
(1)若在距離中心5的地方改變方向,建立適當坐標系,
求:改變方向后前進路徑所在直線的方程
(2)設、兩人速度一定,其速度比為,且后來恰與相遇.問兩人在何處相遇?
(以村落中心為參照,說明方位和距離)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知為平面直角坐標系的原點,過點的直線與圓交于兩點.
(I)若,求直線的方程;
(Ⅱ)若的面積相等,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分)已知圓C與圓相交,所得公共弦平行于已知直線 ,又圓C經(jīng)過點A(-2,3),B(1,4),求圓C的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題共9分)如圖,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,點P為線段CA(不包括端點)上的一個動點,以為圓心,1為半徑作
(1)連結(jié),若,試判斷與直線AB的位置關(guān)系,并說明理由;
(2)當線段PC等于多少時,與直線AB相切?
(3)當與直線AB相交時,寫出線段PC的取值范圍。
(第(3)問直接給出結(jié)果,不需要解題過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知圓,動點到圓的切線長與||的比等于常數(shù),求動點的軌跡方程,并說明表示什么曲線。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C:x2+y2=r2(r>0)經(jīng)過點(1,).
(1)求圓C的方程;
(2)是否存在經(jīng)過點(-1,1)的直線l,它與圓C相交于A,B兩個不同點,且滿足=+(O為坐標原點)關(guān)系的點M也在圓C上?如果存在,求出直線l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設F1,F(xiàn)2分別是橢圓+y2=1的左、右焦點,P是第一象限內(nèi)該橢圓上的一點,且PF1⊥PF2,則點P的橫坐標為(  )

A.1 B. C.2 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

.(5分)直線與曲線有且只有一個交點,則的取值范圍是(   )

A. B. C. D.

查看答案和解析>>

同步練習冊答案