化簡:
2+cos20°-sin210°
考點(diǎn):二倍角的余弦
專題:三角函數(shù)的求值
分析:利用二倍角公式化簡要求的式子,求得結(jié)果.
解答: 解:
2+cos20°-sin210°
=
3-3sin210°
=
3
cos10°.
點(diǎn)評(píng):本題主要考查二倍角公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6個(gè)人站在一排,分別求出在下列情況中各有多少種不同排法?
(1)甲不站右端,也不站左端;
(2)甲、乙站在左、右兩端;
(3)甲不站在左端,乙不站在右端.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a,b,c為角A,B,C的對邊,已知2B=A+C,b=1,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓M的離心率為
1
2
,橢圓上異于長軸頂點(diǎn)的任意點(diǎn)A與左右兩焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形中面積的最大值為
3

(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)P(4,0),聯(lián)結(jié)AP與橢圓的另一交點(diǎn)記為B,若AP與橢圓相切則視為A,B重合,聯(lián)結(jié)BF2與橢圓的另一交點(diǎn)記為C,求
PA
F2C
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是線段AE上的動(dòng)點(diǎn).
(Ⅰ)試確定點(diǎn)M的位置,使AC∥平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面DMF與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)A、B坐標(biāo)分別為(0,-
2
),(0,
2
),直線AM,BM相交于點(diǎn)M,且它們的斜率之積為-
2
3

(1)求點(diǎn)M軌跡C的方程;
(2)若過點(diǎn)D(2,0)的直線l與(1)中的軌跡C交于不同的兩點(diǎn)E,F(xiàn)(E在D、F之間),試求△ODE與△ODF面積之比的取值范圍(0為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+
1
a
)-ax,其中a∈R且a≠0
(Ⅰ)討論f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線y=ax的圖象恒在函數(shù)f(x)圖象的上方,求a的取值范圍;
(Ⅲ)若存在-
1
a
<x1<0,x2>0,使得f(x1)=f(x2)=0,求證:x1+x2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,
3
),B(-1,3
3
),則直線AB的斜率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(x,y)滿足約束條件
x-y+5≥0
x+y≥0
x≤3
,點(diǎn)A(2,4)為坐標(biāo)原點(diǎn),則z=
OM
OA
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案